

NASA EEEE Parts Management / NEPP Overview

Peter Majewicz

NEPP Program Manager peter.majewicz@nasa.gov NASA/GSFC

Susana Douglas

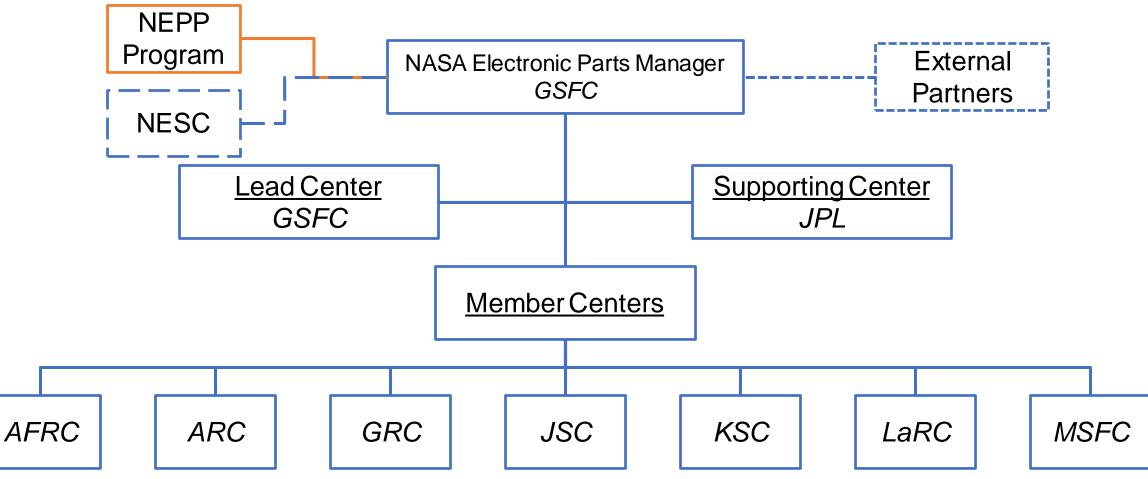
NEPP Deputy Program Manager NASA EEEE Parts Manager susana.p.douglas@nasa.gov NASA/GSFC

Shri Agarwal

NEPAG Coordinator shri.g.agarwal@jpl.nasa.gov

NASA/JPL

Acronyms


3DHI	Three-Dimensional Heterogeneous Integration	MBMA	Model Based Mission Assurance
AFRC	Armstrong Flight Research Center	MDA	Missile Defense Agency
AFRL	Air Force Research Laboratory	MSFC	Marshall Space Flight Center
ARC	Ames Research Center	NASA	National Aeronautics and Space Administration
BGA	Ball Grid Array	NEPAG	NASA Electronic Parts Assurance Group
AU	Auburn University	NEPP	NASA Electronic Parts & Packaging (Program)
BNL	Brookhaven National Laboratory	NESC	NASA Engineering & Safety Center
ВоК	Body of Knowledge	NPR	NASA Procedural Requirement
DLA	Defense Logistics Agency	NRL	Naval Research Laboratory
DSBGA	Die-Size Ball Grid Array	NSRL	NASA Space Radiation Laboratory
EEEE	Electrical, Electronic, Electromechanical, Electro-Optical	NSWC	Naval Surface Warfare Center
ETW	Electronics Technology Workshop	NVM	Non-Volatile Memory
DoD	Department of Defense	OSMA	Office of Safety and Mission Assurance
DPA	Destructive Physical Analysis	OUSD(R&E)	Office of the Under Secretary of Defense for Research and Engineering
DTRA	Defense Threat Reduction Agency	RHA	Radiation Hardness Assurance
FPGA	Field-Programmable Gate Array	SAE	Society of Automotive Engineers
FFRDC	Federally Funded Research and Development Center	SCALE	Scalable Asymmetric Lifecycle Engagement
GRC	Glenn Research Center	SCRM	Supply Chain Risk Management
GSFC	Goddard Space Flight Center	SEE	Single Event Effects
GWG	Government Working Group	SIBWG	Space Industrial Base Working Group
IGA	Internal Gas Analysis	SMA	Safety and Mission Assurance
JEDEC	Joint Electron Device Engineering Council	SRHEC	Strategic Radiation-Hardened Electronics Council
JFAC	Joint Federated Assurance Center	STD	Standard
JPL	Jet Propulsion Laboratory	TAMU	Texas A&M University
JSC	Johnson Space Center	UCF	University of Central Florida
KSC	Kennedy Space Center	UMD	University of Maryland
LaRC	Langley Research Center	U.S.	United States (of America)
LBNL	Lawrence Berkeley National Laboratory	WBG	Wide Bandgap

NASA EEEE Parts Management

Manage and coordinate EEEE parts and radiation engineering capability and needs for the Agency

EEEE = Electrical, Electronic, Electromechanical, Electro-optical

To be presented by S. Douglas at the 2024 Quality Leadership Forum, 14-Mar

NEPP Mission Statement

- NASA's leadership
 - Development and maintenance of guidance for reliable use of EEEE parts
 - Characterization, lot acceptance, screening, and qualification testing
 - Collaborations
 - Academia
 - Industry
 - International partners
 - Other Government Agencies
- Central (Agency) Organization
 - Programs and Projects (P&Ps) need to do less (in theory)
 - Increase "characterization" testing that will apply to most P&Ps
 - More leadership in providing guidance, standards & BoKs

NASA Electronic Parts Assurance Group

ESA SA NRO USAF/SMC Aerospace ARC DA NASA HQ

SUPPORT DEFENSE STANDARDIZATION PROGRAM / DEFENSE LOGISTICS AGENCY (DLA)

- Perform manufacturer audits with DLA
- Review MILSPEC Changes
- Support JEDEC and SAE Working Groups

TELECONFERENCES

NEPAG

- Weekly Domestic
- Monthly International

Government Working Group

- Biweekly

Other specialty areas

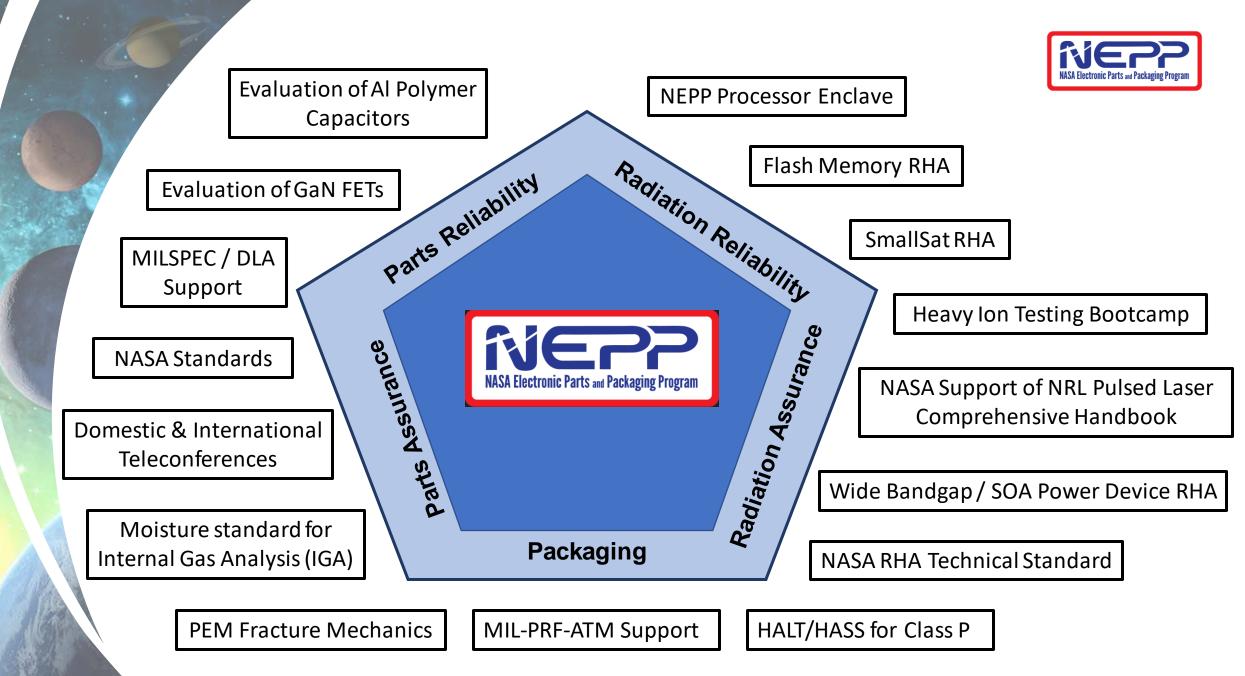
- Hybrids
- 2.5 & 3D Packaging
- Small Mission Success
- Learn @ Lunch Webinars
 (Vendor Presentations, Parts Engineering School)

EEEE parts and materials supply chain discussions held in forums

DLA Audits

- VPT Components (MIL-PRF-19500)
- EPC Space (MIL-PRF-19500)
- Micropac (MIL-PRF-19500)
- Hughes Circuits (Printed Circuit Boards)
- Semi Gen (MIL-PRF-19500)
- Semitronics (MIL-PRF-19500)

MIL SPEC Revisions


- "Hybrid microcircuit" definition in MIL-PRF-38534 & 38535
- MIL-STD-1580 DPA

JEDEC / SAE Task Groups

- Photonic ICs Bond Strength
- Derating IGA
- MIL-PRF-ATM (3DHI Packaging)

Special Circumstance Groups

- Crane DC-DC converter qual failures
- BAE RAD510 Qualification

Leveraging Interagency Collaborations

Partners

- Missile Defense Agency (MDA)
- **Strategic Radiation-Hardened Electronics** Council (SRHEC)
- **Office of the Under Secretary of Defense for Research & Engineering Trusted and Assured** Microelectronics (OUSD(R&E) T&AM) Program
- Naval Surface Warfare Center (NSWC) Crane
- **Defense Logistics Agency (DLA)**
- U.S. Naval Research Laboratory (NRL)
- Air Force Research Laboratory (AFRL)
- **Aerospace Corporation**

- Workforce development support
- Texas A&M University (TAMU) Bootcamp
- NASA Parts Engineering School
 - **RHA** evaluations for
 - Field-Programmable Gate Arrays (FPGAs)
 - Wide-Band Gap (WBG) Power Devices
 - Non-Volatile Memory (NVM)
 - **RHA testing guidelines for**
 - Pulsed-Laser SEE
 - Photodetectors and Sensors
 - **EEEE parts radiation data sharing**
 - Heavy ion test facility access DoD funded beam time
 - **Supply chain** risk reduction

NASA Standards & Guidelines Accomplishments Published

Coming Soon

Phase II of the NESC Recommendations on Use of COTS Electrical, Electronic, and Electromechanical (EEE) Parts for NASA Missions <u>https://ntrs.nasa.gov/citations/20220018183</u>

NASA Guidelines for Ball Grid Array (BGA) and Die-Size BGA (DSBGA) Selection and Application https://nepp.nasa.gov/docs/tasks/076-Packaging-Assurance/Guidelines-BGA-DSBGA-Ghaffarian-2022July20-CL22-3574.pdf

Guidelines for Screening, Lot Acceptance, and Derating of Polymer Tantalum Capacitors for Space Applications <u>https://ntrs.nasa.gov/citations/20220019033</u>

Defense Threat Reduction Agency (DTRA) Pulsed-Laser Single-Event Effects (SEE) Testing—A Practical Desk Reference https://apps.dtic.mil/sti/trecms/pdf/AD1204115.pdf NASA Radiation Hardness Assurance (RHA) Standard for Space Flight Hardware*

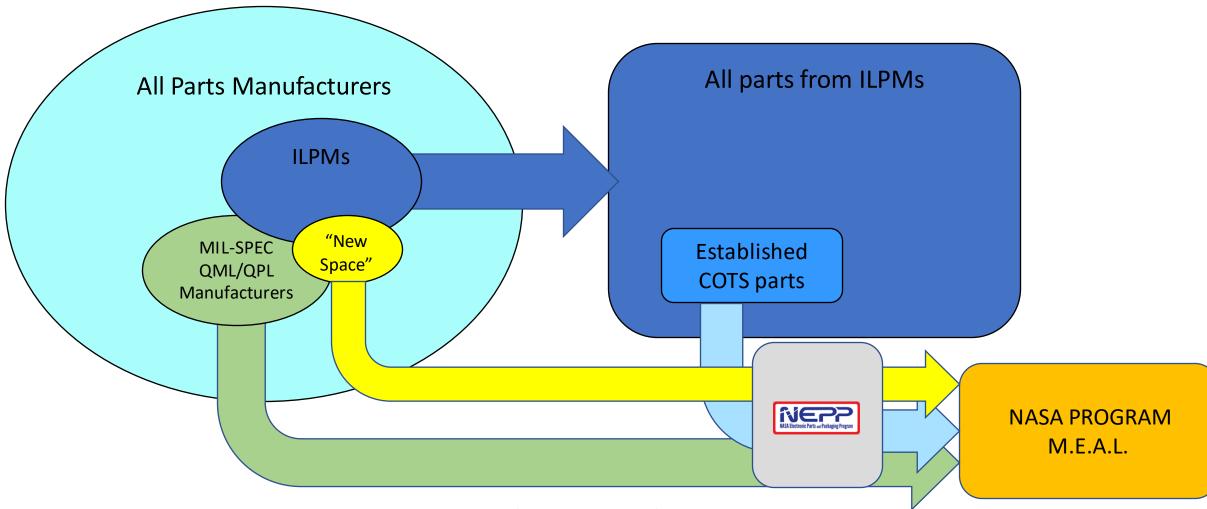
RHA for Photodetectors and Image Sensors Test Guideline

NASA-STD-8739.11 EEEE Parts Selection, Testing, and Derating Standard*

* Preliminary draft released at request

NASA-STD-8739.11 (441 pages)

LIST OF SECTIONS


SECTION C1.	CAPACITORS (Added Polymer Tantalum Capacitors)	25
SECTION C2.	CONNECTORS AND CONTACTS	81
SECTION C3.	CRYSTALS	112
SECTION C4.	CRYSTAL OSCILLATORS	119
SECTION D1.	DETECTORs	130
SECTION F1.	FIBER OPTICS, PASSIVE	143
SECTION F2.	FILTERS	162
SECTION F3.	FUSES	168
SECTION H1.	HEATERS	189
	LASER DEVICES	197
SECTION M1.		212
	MICROCIRCUITS HYBRID (HERMETIC)	231
	MICROCIRCUITS, MONOLITHIC	239
	MICROCIRCUITS, PLASTIC ENCAPSULATED	257
	RF AND MICROWAVE DEVICES	265
	MICROCIRCUITS, HYBRID (NON-HERMETIC)	239
	OPTOELECTRONICS	271
SECTION R1.	RELAYS, ELECTROMAGNETIC	285
SECTION R2.	RESISTORS	307
SECTION S1.	SEMICONDUCTOR DEVICES, DISCRETE	356
SECTION S2.	SEMICONDUCTOR DEVICES, PLASTIC ENCAPSULATED	369
SECTION S3.		378
	THERMAL SENSORS	400
SECTION W1.	WIRE AND CABLE	418

Agency-level replacement for legacy EEE-INST-002 Instructions for **EEE** Parts Selection, Screening, Qualification, and Derating

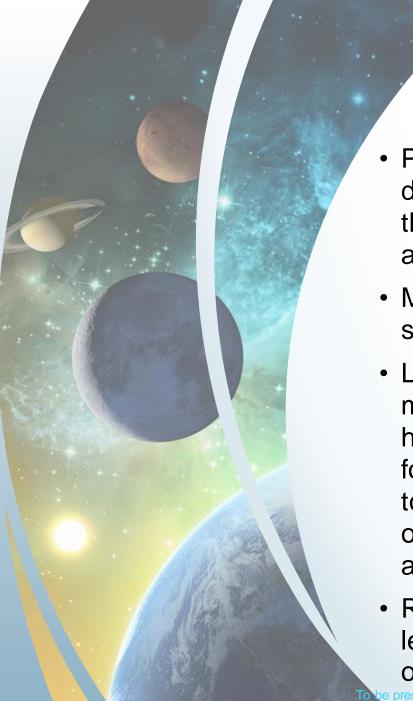
NASA COTS Implementation Approach: ILPM Pathfinder – Big Picture

To be presented by S. Douglas at the 2024 Quality Leadership Forum, 14-Mar

What Is An ILPM?

NESC Report defined an Industry Leading Parts Manufacturer (ILPM) as:

A parts manufacturer with high volume automated production facilities and which can provide documented proof of the technology, process, and product qualification, and its implementation of the best practices for "zero defects" for parts quality, reliability and workmanship.


ILPM Criteria

- Must have at least one Established COTS Part category
- Willing to share parts quality and reliability data with NASA (DPPM, FIT) and how those statistics are derived
- Willing to provide NASA documents substantiating parts quality and reliability
- 4. Willing to work with NASA or prime contractors to maintain a strong customer-manufacturer relationship (preference for on-site visit)

An Established COTS Part is a Part That:

- Is produced using processes that have been stable for **at least one year** so there are enough data to verify the part's reliability.
- Is produced in **high volume**. High volume is defined as a series of parts sharing the same datasheet having a combined sales volume over one million parts during the part's lifetime.
- Is 100% electrically tested per datasheet specifications at typical operating conditions in production. Additionally, the manufacturer must have completed multi-lot characterization over the entire set of operating conditions cited in the part's datasheet, prior to mass production release.
- Is produced on fully **automated production lines** utilizing statistical process control (SPC), and undergoes in-process testing, including wafer probing for microcircuits and semiconductors, and other means appropriate for other products (e.g., passive parts).
- Has demonstrated consistent yield trend appropriate for high volume commercial technologies at that technology node.

Radiation Concerns

- Parts assurance levels in EEE-INST-002 and equivalent documents do not indicate the level of radiation tolerance, and thus the selection of parts level 1, 2, or 3 does not imply or provide any type of radiation hardness or mitigation of radiation effects
- MIL-SPEC parts with and without a radiation hardness designator, signifying TID performance, may still be sensitive to SEE
- Lot-to-lot variation of radiation sensitivity may be larger for non-radiationhardness-assured (non-RHA) parts than for RHA parts, since space radiation tolerance is typically not designed and optimized for parts without radiation addressed in their datasheets
- RHA mitigations must include systemlevel techniques and not depend solely on part-level robustness
 be presented by S. Douglas at the 2024 Quality Leadership Forum, 14-Mar

Credit: NASA/GSFC

Radiation Hardness Assurance (RHA) Standard for Space Flight Hardware

- RHA methods rely on risk avoidance (part-level RHA), risk management (system-level RHA), or hybrid approach (concurrent engineering)
- Integrates the RHA activities into the program schedule or project lifecycle. Early start of RHA activities and adherence to the stipulated timeline of tasks and deliverables is critical to meet performance requirements in the mission radiation environments and balance budget, schedule, and risk posture constraints.

RHA Category	S1	\$2	\$3	S4	\$5
Risk tolerance posture	Low	Low-Medium	Medium-High	High	Highest
Anticipated scope of SEE testing ⁴⁻⁶	Piece-part heavy ion characterization test data if not already available. Additional testing as needed for NDSEE characterization, low-LET-threshold parts proton susceptibility, CCA- level for complex system interactions (e.g., SW and HW) validation, etc.	Combination of CCA- and piece-part-level, high-energy proton and heavy ion testing. Additional testing as needed for NDSEE characterization, low-LET-threshold parts proton susceptibility, CCA- level for complex system interactions (e.g., SW and HW) validation, etc.	Combination of CCA- and piece-part-level, high-energy proton and heavy ion testing ⁶⁻⁷	CCA-level high energy proton testing	None

The Pursuit of a Future NASA EEEE Parts Capability: Parts Evaluation and Assessment Laboratory (PEAL)

Parts Selection

Develop/maintain manufacturer relationships

Solicit new sources of supply

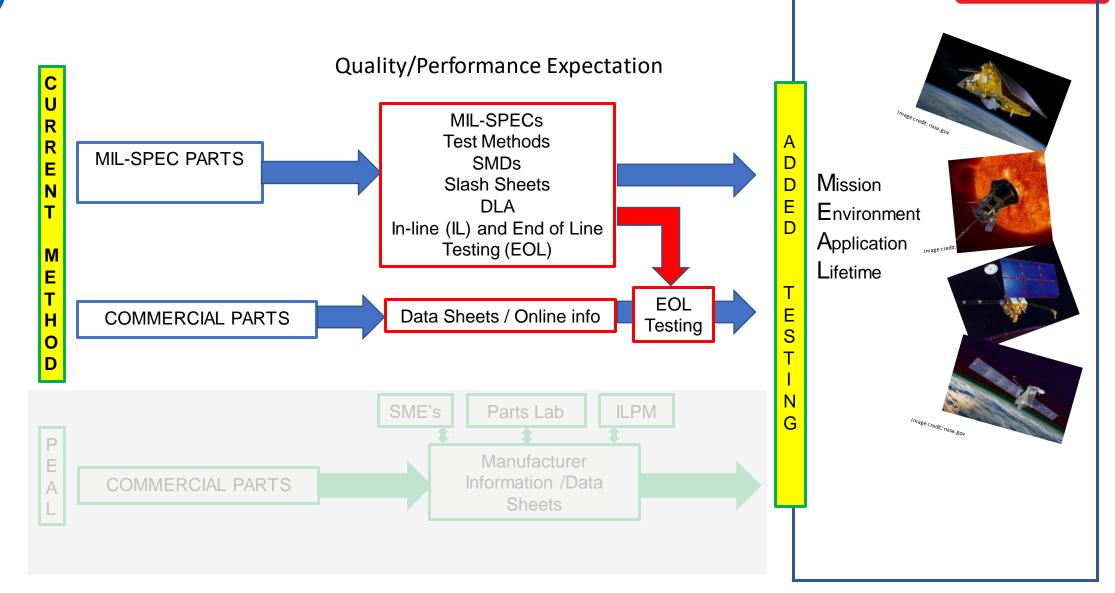
Test & Evaluation

Develop appropriate valueadded test plans

Document part limitations

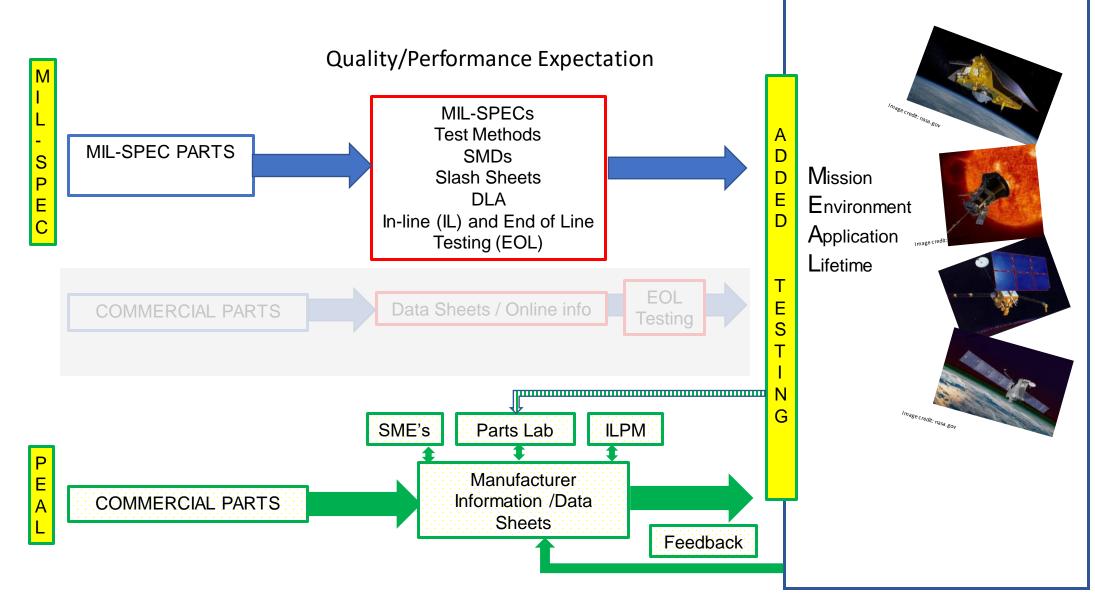
Parts Acquisition Track supply chain concerns

Maintain strategic supplies of critical parts


Parts Database

Build/maintain a preferred parts list

Feedback loop for post-launch performance


Methods for Selecting Parts

Methods for Selecting Parts

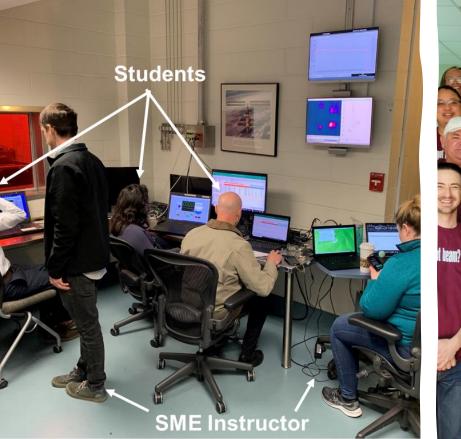
Cost of Not Implementing PEAL

- Major impediments to the use of new technology with the potential for high reliability in space missions
- Tendency to maintain outdated heritage designs that are not only costly and time consuming, but keep us rooted in the past
- Continued reliance on the use of parts that are growingly rapidly in cost and very long lead time, and too often uncertain delivery
- No easy path for taking proven technologies into flagship missions
- Risk of repeating testing efforts for multiple projects across the Agency that can be solved centrally
- Lack of knowledge-base in the NASA community about current EEEE part technology advancements

Workforce Development

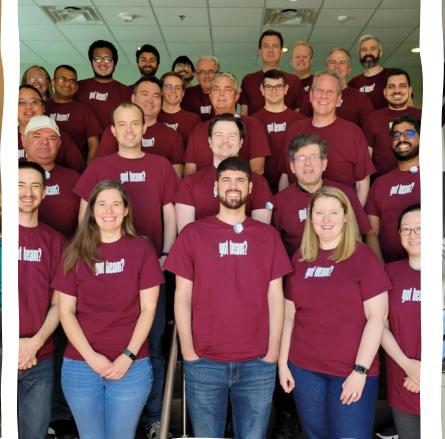
NASA continues to address aging workforce concerns in the field by providing new learning opportunities, mentorship, and hands-on training for entry-level parts and radiation engineers and university students, within NASA and via work with external cohorts

Parts Engineering


NASA EEE Parts 101 Workshop*, at MSFC in 2023, JPL in 2024, virtual attendance open to NASA partners

NEPP ETW training tutorials* MIL-SPEC training and new specification initiatives at various conferences and workshops*

NEPP Parts Engineering School*


Radiation
Effects &
Analysis

	1				
Rad101 short	Radiation Testing	Single Event Effects	UMD	NASA employee	
courses at	Hands-On Training*	University Seminars*,	Satellite	course	
various	TAMU Bootcamp	hosted by Stony	Design	"Introduction to	
conferences	MDA Radiation	Brook Univ./BNL,	graduate	Radiation	
and	Test Workshop at	available online at	course*	Assurance for	
workshops*	NSRL	https://nanohub.org/	(ENAE 691)	SMA"	
		I second s	·		

All Photos Courtesy of Chris Jarvis

Workforce Development

3rd round of the Texas A&M University (TAMU) Bootcamp Mar 5-8

- Hands-on training in single-event effect (SEE) radiation testing of electronic components with heavy ions
- Model for additional radiation test workshops led by DoD at NSRL and LBNL

National Aeronautics and Space Administration

NASA / NEPP Parts Engineering School Program

Volume 15, Issue 1, May 26, 2023 NASA Parts Engineering School

NASA Parts Bulletin distributed at NEPP ETW and posted to NSC SMA website: <u>https://sma.nasa.gov</u>

Update in progress to reflect new activity since publication

Certificates and Master's Degree program offerings at partnering universities to supply the needed educational basis for the current and future parts engineering workforce The NASA Electronic Parts and Packaging Program (NEPP) is encouraging the development of a NASA Parts Engineering Program alongside university partners Auburn University and University of Maryland, through NASA center-wide collaborations between NASA Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and Langley Research Center (LaRC). The program will address the knowledge gap in the current electronic parts engineering workforce and will lead to increases in the number of trained professionals in the workforce, including cultivating the next generation of Parts Engineers.

OPPORTUNITY

With new developments in EEEE parts, there is an ever growing knowledge gap for incoming Parts Engineers

- The need to address this gap has been prevalent through all NASA facilities and involved industries.
- It is critical to tackle the lack of awareness as well as the lack of technical knowledge.
- Currently, there are no programs offering a comprehensive parts engineering focus either at universities or throughout industries in the field.

SOLUTION

Workforce Development at a national level to narrow the knowledge gap.

- Leveraging the knowledge base of the universities and industry partners will assist in filling these gaps.
- NASA to provide guidance in developing university programs to support the aerospace, military, and industrial community

PROGRAM GOAL

Parallel Workforce Development

- Encourage the development of a curriculum of EEEE parts engineering topics at the university level.
- Expand and share training materials currently offered to NASA EEEE Parts Engineers.

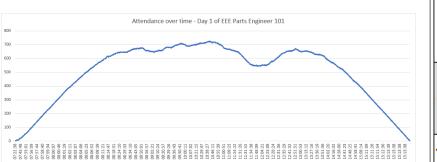
NASA Parts Engineering School

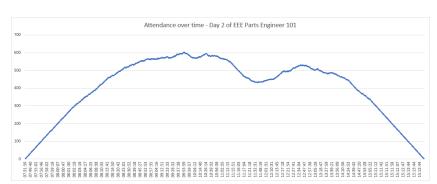
- Current Electronic Parts Engineering Certificate and Master's Degree
 programs with Auburn University, UMD, and UCF
 - NEPP website announcement: <u>https://nepp.nasa.gov/pages/NPES/</u>
 - Program website: <u>https://www.jpl.nasa.gov/go/parts-engineering-school</u>, with links to each university website for enrollment
 - UCF will be the first school or offer an Electronic Parts Engineering Certificate in Summer/Fall 2024 (Master's Degree to follow)
- Kick-off discussions held with Univ. of California, Berkeley and Virginia Tech
- Upcoming presentations to MDA Parts, Materials, and Processes Board (PMPB) Annual Meeting on Apr 2
- Development of additional parts engineering coursework into the 2nd spin of the NASA EEE Parts 101 Workshop at JPL Dec 5-6
 - Half-day Parts 101 workshops to be given at the Aerospace Space Parts Working Group (SPWG) and Components for Military & Space Electronics (CMSE) Conferences in Apr/May

About the NEPP Program

The NEPP Program generates technical knowledge and recommendations about electrical, electronic, electromechanical (EEE) part performance, application, failure modes, test methods, reliability and supply chain quality within the context of NASA space flight missions and hardware. This information is made available to the NASA and high-reliability aerospace community through publications, web pages and links published on this website.

View the NEPP Charter



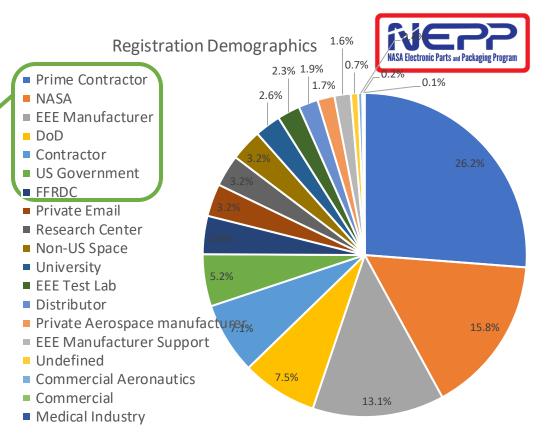


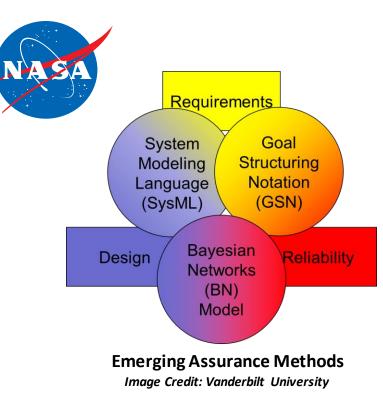
EEE Parts 101 Workshop at JPL Dec 5-6

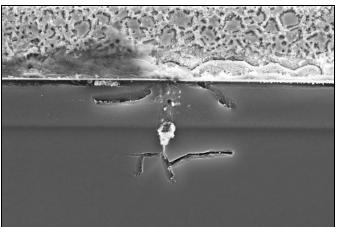
Peak attendance: Day 1 – 725, Day 2 – 603

	Tuesday, December	r 5th		Wednesday, December 6th			
			8:00 am - 8:45 am Parts History into Current State Lyudmyla Ochs, GSFC				
		Training Overview		Basics of Failure Analysis Lyudmyla Ochs, GSFC			
8:00 am - 8:15 am	Shri Agarwal, JPL Welcome Statement Opening Remarks Dr. Laurie Leshin, JPL Director		9:30 am - 10:00 am	Parts Number Decipher Carlton Faller, JSC			
			10:00 am - 11:30 am	Mil-Specs Larry Harzstark, Aerospace Corp			
	Parts Engineering School Discussion NASA School Team Auburn University University of Maryland University of Central Florida		11:30 am - 12:15 pm	Lunch			
8:15 am - 10:30 am			12:15 pm - 1:00 pm	Failure Mechanisms John Evans, NASA Headquarters Bhanu Sood, NASA Headquarters			
10:40 am - <mark>11:</mark> 30 am	Radiation Training Steve McClure, JPL			Fracture Mechanics			
11:30 am - 12:30 pm	Lunch			Intro to Fracture Mechanics	John Evans, NASA Headquarters Bhanu Sood, NASA Headquarters		
	EEE Parts	Tutorial	_	Fracture Mechanics Status	Shri Agarwal, JPL Nazia Ovee, JPL		
12:30 pm - 3:00 pm	JEDEC, SAE Alternate Grade Parts	Shri Agarwal, JPL Mark Porter, JPL	1:00 pm - 3:00 pm	FM Testing of Small Packages	Scott Popelar, Frontgrade Ben Mendoza, Golden Altos Nazia Ovee, JPL		
	Failure Analysis	Sultan Lilani, Integra Technologies	_	Findings from NESC Testing of Copper Wire Bonds	Linda Del Castillo, JPL		
	Silicon Carbide and Gallium Nitride	Rod Deleon, Boeing		FM Testing of Large Packages	Reza Ghaffarian, JPL Ray Kuang, Microchip		
I				In-House Test Capabilities	Sergeh Vartanian, JPL Nazia Ovee, JPL Gustavo Jimenez, JPL		

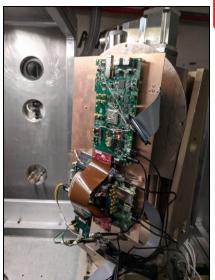
Agenda (all times PDT USA)


EEE Parts 101 Workshop at JPL Dec 5-6

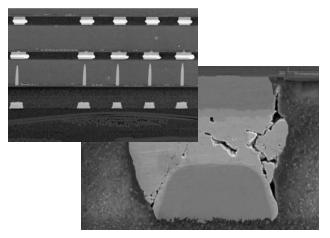

1/4 of attendees from the large prime contractors (Boeing, Northrup Grumman, etc.)


2/3 of attendees from U.S. Government Agencies / FFRDCs

- 986 unique registrations on Webex
- In-person attendance by:
 - 16 non-JPL NASA personnel
 - UCF, AU, and UMD professors, who presented on the Parts Engineering School Program details
- JPL Afternoon tours provided onsite Leadership Forum, 14-Mar



Advanced Technology Reliability Image Credit: NASA


14th Annual NEPP Electronics Technology Workshop (ETW)

Scheduled dates: June 3-6, 2024

https://nepp.nasa.gov/

Radiation Testing & Analysis Image Credit: NASA

Advanced Microelectronics Packaging Image Credit: NASA

To be presented by S. Douglas at the 2024 Quality Leadership Forum, 14-Mar

2023 NEPP Electronic Technology Workshop (ETW)

MILSPECs / Standards & Policies

Collaborations / Working Groups

Photonics

Processors, FPGAs, Memories

Wide Band Gap

Advanced Packaging (2.5/3D)

Passives (Capacitors, Resistors, Wire/Connectors)

COTS Utilization / Small Sats / Model Based Mission Assurance (MBMA)

Training / Tutorials

- Polymer Tantalum Capacitor Guidelines
- Statistical Interpretation of Life Test: MIL/JEDEC Requirements Comparison
- PPAP Tutorial

All NEPP ETW presentations for 2023 and past years are at https://nepp.nasa.gov/

To be presented by S. Douglas at the 2024 Quality Leadership Forum, 14-Mar

The End

				+ 2++	
	To be presented l	by S. Douglas, at the 2024 Out	ality Leadership Forum, 14-Ma	•	