

Quality Assurance Leadership Strategy: Predictive Capability to Meet Cost, Personnel, and Schedule-Constrained Program Environment

- 1. Get in Early: Complementary and Robust Requirements Flowdown
- 2. Automate Insight: Data Acquisition, FAIR, Data Analytics, MBQA
- 3. Predicting Supplier Capability: Focus on Process Capability instead of GMIPs

Office of Safety and Mission Assurance Mission Assurance Standards and Capabilities Division (MASCD) Missions and Programs Assessment Division (MPAD) NASA Safety Center/QA Technical Discipline Leadership Quality Assurance Program Leadership Steering Group Quality Assurance Working Group

MASCD Scope: Rules, Tools, Training, SME Consultation

Current Priorities:

- Faster decision velocity
- Competency in risk-based decisionmaking
- Robust SMA planning
- Evaluate SMA to the plan
- Leverage others' investments: industry, DoD, FAA, DOE, etc.

	Position	Primary POC for	
		NASA QA policies, NASA technical standards,	
Jeannette	OSMA QA Discipline	adopted VCSs, External Agency-level Inquiries	
Plante	Integrator	and Actions, MetCal Program Executive, NDE	
		Program Executive, MSA Tool	
Valle Kauniste	OSMA Supply Chain	SCRM, Back-up for External Agency-level	
		Inquiries and Actions, Standard Contracts	
	Risk Manager	Content	
Don Brandl	NSC QA Technical	APPG, Advisor to Workmanship Program for	
Don Brandi	Discipline Lead	Training, QAWG, QLF	
Robert Lange	KSC, QA Leadership	QAWG, QLF, MBQA	
	Consultant	QAWG, QLF, MIBQA	
Alan Wallace	AFRC QA Leadership	Advisor for Aviation Quality Assurance	
	Consultant	Advisor for Aviation Quality Assurance	

Build in Quality: Get Involved Early

Formulation: QA Not Present

Mission Success Objectives

Program/Project Management Framework

Budget, Schedule

Acquisition Strategy: Contract Type, Likely Prime Offerors, Innovations First Half of Lifecycle: Low Awareness of QA Program and QA Program Contributions

Risk Posture

Industrial base, SCRM

Critical Items/Attributes

Manufacturability

Flowdown: PQA

Data Management

Risk Characterization and Management

Second Half of Lifecycle: Overemphasis on GCQA

QMS Audit

Process Audit

Witness Production/Events

Review Data

Inspect Product

MRB/RCCA

Risk Characterization and Management

SCRM: Supply Chain Risk Management QA: Hardware Quality Assurance QMS: Quality Management System MRB: Material Review Board RCCA: Root Cause Corrective Action Get in Early: If it's such a great idea, why haven't we done it already?

Obstacles to QA Requirements Tailoring and Flowdown

• FAR:

• Does not compel projects to plan QA Program well

QA: Hardware Quality Assurance FAR: Federal Acquisition Regulation

- Emphasis on confirming product conformity *to justify supplier payment* rather than full lifecycle risk management in the interest of *mission success*
- Oversimplification of "Higher Level Requirements" as a list of technical standards

46.202-4 Higher-level contract quality requirements.

(a) Agencies shall establish procedures for determining when higher-level contract quality requirements are necessary, for determining the risk (both the likelihood and the impact) of nonconformance, and for advising the contracting officer about which higher-level standards should be applied and included in the solicitation and contract. Requiring compliance with higher-level quality standards is necessary in solicitations and contracts for complex or critical items (see <u>46.203</u>) or when the technical requirements of the contract require-

- (1) Control of such things as design, work operations, in-process controls, testing, and inspection; or
- (2) Attention to such factors as organization, planning, work instructions, documentation control, and advanced metrology.

(b) Examples of higher-level quality standards include overarching quality management system standards such as ISO 9001, ASQ/ANSI E4, ASME NQA-1, SAE AS9100, SAE AS9003, and ISO/TS 16949, and product or process specific quality standards such as SAE AS5553.

- NASA Requirements Development Teams (**RDTs**) are small and can have difficulty knowing about and using "new" requirements in a timely manner.
- Requirements perceived as *adding* cost rather than *saving* cost.

Why can't we change the way we engage in requirements development?

- **Poor tailoring competency** within the discipline domains. All requirements and risks are treated with equal weight.
- Low TRL/MRL may rely more heavily on custom procedures than established technical standards; QC/QA criteria not well established and communicated.
- **COTS are retail**. Even for products designed for space applications. Approach must be capabilities accommodation rather than qualification.
- Suppliers may use **different or overlapping quality STDs** based on market target and established command media: IPC vs SAE vs Nadcap vs MIL QML

- Protracted requirements negotiations
- Equivalency reviews
- Waivers
- Requirements fall through cracks: flow down failures

 IPC: Trademarked Corporation, Standards Development Organization (SDO) for electronic packaging
SAE: Society of Automotive Engineers, SDO
Nadcap: Trademarked Corporation, 3rd party accreditor for suppliers of mechanical and chemical manufacturing processes
MIL QML: Military specifications system, qualified manufacturer program
COTS: Commercial off the Shelf

What can we do? *Strategy for Better Planning*

- 1. Use early days for discovery: MRL, COTS, Stds
- 2. Demand a QA Plan! Use OSMA's SMAP generator: APPG.sma.nasa.gov
- 3. Maximize leverage of industry standards to enable offeror's readiness to respond to RFPs
- 4. Use contract clauses to clarify details related to AS9100
- Leverage the LCR process¹ by defining look-ahead QA deliverables
- 6. Use standardized DRDs that generate LCR deliverables Use DRD products to populate safety case
- 7. Use Safety Case Model to track and visualize SMA program status, risk status, and satisfaction of conditions for the CoFR

Move standard clauses and DRDs into industry standards

NASA Life-		oval for		oval for		
Cycle Phases	Porm	ulation FORMU	LATION Implem	entation	IMPLEMENTA	TION
Life-Cycle Phases	Pre-Phase A: Concept Studies	Phase A: Concept& Technology Development	Phase B: Preliminary Design & Technology Completion	Phase C: Final Design & Fabrication	Phase D: System Assembly, Integration & Test, Launch & Checkout	Phase E: Phase F: Operations & Closeout Sustainment
Life-Cycle Gates Program/Project Documents Program Updates		KDP B Preliminary PCA ¹ Preliminary Program Project Plan(s) ¹	KDP C PCA1 Program/Project Plan(s) ¹	KOP D		KDP En ^d KDP F Finz Archive Updated PCA Updated PCG Project Plan
Agency Reviews Program/Project Life-Cycle Reviews ^{2,5} Other Reviews		SRR MDR/SL	DR PDR	CDR/ PRR ³ SIR		
Supporting Reviews		Pee	r Reviews, Subsystem	PDRs, Subsystem CD	Rs, and System Review	rs End of Flight PFAR
Reflights ⁷	÷		▲ Re-enters life cycle as a	ppropriate based on upgrade	▲ needed after flight	*

1. See NPR 7120.5, NASA Space Flight Program and Project Management Requirements

SMAP: Safety Mission Assurance Plan APPG: Assurance Project Plan Generator LCR: Life Cycle Review DRD: Data Requirement Description CoFR: Certification of Flight Readiness

Rich content in the policies and SDO documents are not getting into RFPs and contracts.

Other IAQG			Clauses i	n the 9100	Standard		Document Number	Title
Standards	4	5	6	7	8	9	NASA-STD-5009	Nondestructive Evaluation Requirements for Fracture Critical
9101	4.4					9.2		Metallic Components
9102					8.4.2, 8.5.1.3		NASA-STD-6016	Standard Materials and Processes for Spacecraft
9103					8.1, 8.3.5, 8.4.3, 8.5.1		NASA-STD-8739.6	Implementation Requirements for NASA Workmanship Standards
9107					8.6		NASA-STD-8739.10	Electrical, Electronic, and Electromechanical (EEE) Parts
9114					8.6			Assurance Standard
9115	All	All	All	All	All	All		
9116					8.3.6, 8.4.3,		NASA-STD-8739.12	Metrology and Calibration
					8.5.6		NASA-STD-8739.14	NASA Fastener Procurement, Receiving Inspection, and Storage
9131					8.7			Practices for NASA Mission Hardware
9132					8.5.2			
9133					8.4.2, 8.6		NAS 412 Revision 1	Foreign Object Damage/Foreign Object Debris (FOD) Prevention
9134					8.4.1		SAE	Derformence Standard for Acrospace and High Derformence
9162					8.5.1, 8.6			Performance Standard for Aerospace and High-Performance
				ne specific o	clause of the 9	100 stano	GEIA-STD-0005-1A	Electronic Systems Containing Lead-free Solder
related	d to the othe	er IAQG stan	dard.				SAE	Standard for Mitigating the Effects of Tin Whiskers in Aerospace
Current list	t of relat	ted STDs	for AS9	100			GEIA-STD-0005-2A	and High-Performance Electronic Systems
				100			SAE AS5553C	Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition.
							SAE AS6174A	Counterfeit Materiel, Assuring Acquisition of Authentic and

STDs Invoked by NASA Quality Policy

Conforming Materiel

OSMA/QA Leveraging the STDs approach.....

9146

Other IAQG/AAQG Standards				
9101	9116	9136		
9102	9117	9137		
9103	91TBD	9138		
9107	9131	9145		
9018	9132	9146		
9114	9133	9147		
9115	9134	9162		
		9163		

Potential list of related STDs for IA9100

- 9018 Customer Identified Major Quality Management System Nonconformity Other Party Collaborative Corrective Action Process
- 91TBD [Integration into ICOP for Aerospace Product Suppliers Without Design Authority]
- 9145 Aerospace Series Requirements for Advanced Product Quality Planning and Production Part Approval Process
 - Foreign Object Damage (FOD) Prevention Program -Requirements for Aviation, Space, and Defense Organizations

Formulation: QA Not Present	First Half of Lifecycle: Low
Mission Success Objectives	Awareness of QA Program and QA Program Contributions
Program/Project Management Framework	Risk Posture
Budget, Schedule	Industrial base, SCRM
Acquisition Strategy: Contract	Critical Items/Attributes
Type, Likely Prime Offerors,	Manufacturability
Innovations	Flowdown: PQA
	Data Management
	Risk Characterization and

Management

New Standard Clauses for NPR 8735.2C, Standard DRDs

Red indicates content to be addressed in SAE ARP9009, Aerospace Contract Clauses

Required QA Training and Certification Credentials	QA Implementation Plan (std DRD)		
Custom Operator and Inspector Training	Handling Government Furnished Equipment (GFE)		
Approach for Determining Criticality	Parts and Materials Certification		
Data Capture General * (new DRD)	Production Readiness Review (PRR) Planning		
Baseline Technical Standards *	First Party Verifications		
Counterfeit Avoidance * (new NFS clause for EEEE parts)	Coordinating Inspections or Tests Performed by the Govt		
Product, Process, and Verification Attributes Captured in Engineering Documents	Second Party QA General		
Product, Process, and Verification Attributes Flowdown *	I&T Quality Assurance		
QA Factors for Design Reviews (MRL, SCRM)	Notice of Suspect Items and Recalls		
Reporting Manufacturability Risks in Design Reviews	Launch Preparation and Execution Assurance		
SCRM Research	Mission Operations Assurance		
Approval to Transfer Hardware Between Subtiers and Use of DD250	Change Management *		
Flow Down Assurance	Review Boards (Closed Loop System for NCs) * (new DRD)		
QMS Standards by Supply Chain Tier and Risk *	NASA Technical Authority (TA) Concurrence for MRB Dispositions		
Supply Chain Map (new DRD)	CAR and OASIS Reporting *		
GIDEP * (new FAR clause, std DRD)	Reporting Fraud, Malpractice, and Serious Misconduct		

Calibration, Electronic Data Submission, FOD, CoC, FAI, APQP, Maintenance and Repair.....and more.

Leveraging Standard DRDs

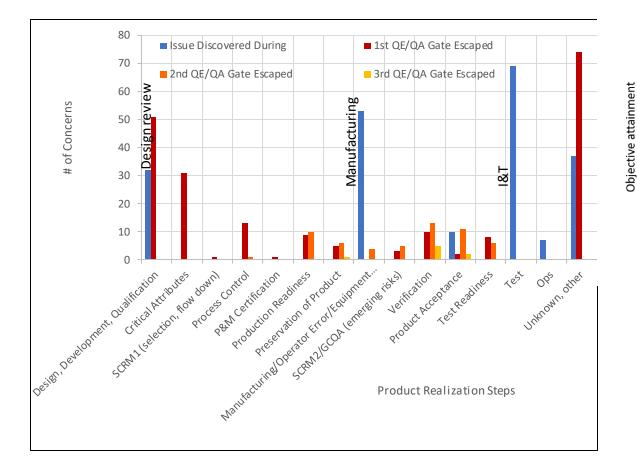
Revised 2-2-23 – DRAFT

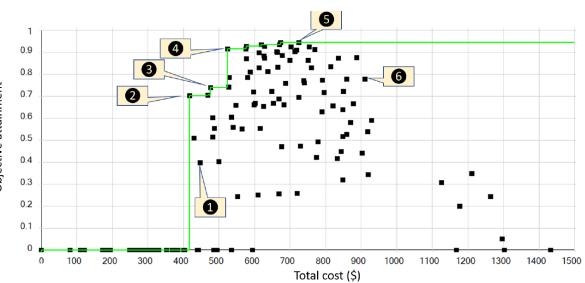
1. DRD Title: Supply Chain Visibility (SCV) Reporting for NASA Mission Project Procurements

7 DRD No · DRD Number TRD

3 Data Tuna: Tune 1

4 $OPR \cdot NASA$ Office of

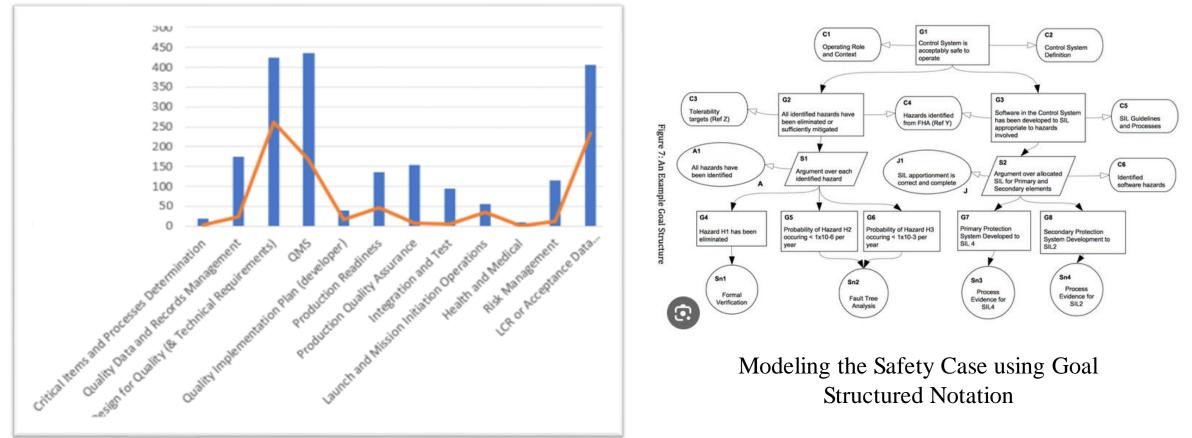

- Continuously **build supply chain map** for NASA programs/projects
- Like the emerging requirements related to cyber
- Data will reside in NASA's Supply Chain Insight Central SCRM database (internal only, CUI, restricted access)
- Reporting starts within 60 days of contract award and at least biannually thereafter.
- Supplier meta data (e.g., name, address, Cage Code)
- Contract meta data
- Relevant product or service and association to WBS or hardware element
- Flow down requirement four tiers


DRD No.	Data Requirement Title
001	Quality Assurance Implementation Plan
002	Government Industry Data Exchange Program (GIDEP) and NASA Advisories/ and Alerts
003	NC Reporting and Review Board Status
004	Foreign Object Debris (FOD) Control Program Plan
005	Electrostatic Discharge (ESD) Control Program Plan
006	Counterfeit Avoidance Program Plan
007	Lead-Free (Pb-free) Tin Control Plan
008	QA Metrics

Automate Insight: Data Acquisition, FAIR, Data Analytics, MBQA

How can we leverage IT to exploit what we already know, absorb what we've learned, visualize current state?

MRB Analyses: Insight into QC escapes found at test


GMIP Effectiveness and Cost

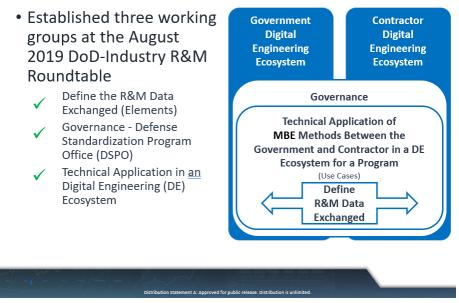
S. L. Cornford, A. Wheeler, M. S. Feather and J. F. Plante, "Assurance Equations: A Cost and Criticality Model for Optimizing Quality Assurance Surveillance," *2022 IEEE Aerospace Conference (AERO)*, Big Sky, MT, USA, 2022, pp. 1-13, doi: 10.1109/AERO53065.2022.9843807.

Topic Takeaway: Requirements Development

- Learn about additional standards that reduce custom SOW clauses
- Research the **supply chain and understand the QMS and technical standards** that are going to be a good fit
- **Push for a QA plan earlier**. This is the way to introduce value-added research and planning work
- Use DRDs to pull in early indications of Manufacturability, Supply chain capability, industrial base risk, data/metrics that will be available.
- Contribute to the maturation of standard SOW clauses

Traceability Analysis: Policy vs Contracts

- NASA's Assurance Program Plan Generator (APPG)
- Machine Readable Technical Standards: SAE ITC Digital Standards Alliance


Automate Insight: Data Acquisition, FAIR, Data Analytics, MBQA

Needs:

- Digital tools automating data acquisition: QR codes, Bar codes, Apps and Workflows, User profiles, MTConnect, MB/digital data deliverables.
- Ability to access and combine data sets (one system will *not* rule them all)
 - Common taxonomies for suppliers, hardware, processes, defects, technical requirements
 - MBQA safety case built on AS9100 framework (NASA Quality Policy aligned with AS9100 framework)
- Ability to design and manipulate analyses (views)

DRD \rightarrow MBx Inputs \rightarrow MBAssessment \rightarrow Decisions \rightarrow LCR

AIA Joint Strategic Quality

Council (JSQC)

2

Government

- DCMA Craig Bennett (core)
- DLA(R&D) Dr. Senthil Arul
- FAA Steve Roomes
 - TBD
- NASA Jeannette Plante (core)
 - Don Brandl NASA Safety Center, Cleveland, OH
 - Robert Lange Kennedy Space Center, FL
- OUSD(R&E) Mr. Chris DeLuca, Director, Specialty Engineering
 - Mr. Albert Ismailov (Specialty Engineering-QA Lead)
 - Casey DeCarlis
- AIA QAC Gery Mras (core)

Model Based Mission/Quality Assurance MBM/QA Team

Industry

- BAE Systems Brian Svoboda
- Ball Aerospace Rick Roelecke (core)
- Boeing Mike Best
- Elbit Systems Ashley Dunn (lead/core), Jennifer Marsh (alt)
- General Dynamics TBD
- L3 Harris April Tidwell
- Lockheed Martin Hannah Ensor (core), Brian Tenney (alt)
- Northrop Grumman Lisa Fenton
 - Doug Cartney, Laura Lam (alt)
- Raytheon Technologies John Fordyce (lead/core)
 - Hermitt Vega (PW), Logan Brooks (RAY), Cindee Cognetta (alt), Lindsey Shaw (alt)
- Rolls Royce Tracy Lockhart (core)
 - Carley Sawyer, Elizabeth Watts
- Textron Bell Keith Danel
- Triumph Group Alma Palmer

* Specialty Engineering, Office of Systems Engineering and Architecture, Office of the Under Secretary of Defense for Research and Engineering

AIA: Aerospace Industries Association MBQA: Model Based Quality Assurance FMEA: Failure Modes and Effects Analysis FAI: First Article Inspection R&M: Reliability and Maintainability MBE: Model Based Engineering

Topic Takeaway: Digital Transformation

- ✓ Urgent need for **digital infrastructure** for:
 - QA to enter and coexist in the Digital Engineering ecosystem
 - To streamline data acquisition and FAIR storage
- ✓ Quality data can feed MBQA Views
 - Evolving insight for decision-making
 - Breakdown communication barriers
- ✓ Think **FAIR** rather than Same. Enable custom analyses.
- ✓ Use **DRDs to drive communicating** via data sets and models.

MBQA: Model Based Quality Assurance FAIR: Findable, Accessible, Interoperable, Reusable DRD: Data Requirements Description

