



MBSE on NASA's Proposed Europa Mission

Maddalena Jackson

Flight System Requirements Team Model System Engineering Team

- Introduction
- Europa?
- MBSE on the Europa Project?
- How's that going?
- Recommendations

INTRODUCTION

Introduction

- Me: Europa Project for ~2 years
- MBSE for 7
- Roles:
 - Practitioner
 - Systems Engineer on FS requirements team
 - Do requirements engineering, happen to use MBSE as tool of choice
 - SW developer for query, automation, tool, visualization, and any other as-need infrastructure
 - Model System Engineer for PSE
 - One interface between SEs with more traditional skill sets and system model
 - My particular role is software management

EUROPA?

Europa

"Europa, with its probable vast subsurface ocean sandwiched between a potentially active silicate interior and a highly dynamic surface ice shell, offers **one of the most promising extraterrestrial habitable environments**, and a plausible model for habitable environments beyond our solar system"

"Visions and Voyages", 2011 Planetary Decadal Survey

- How do we solve Europa's mysteries? By potentially sending a spacecraft and instruments to collect data for our investigation!
- Europa Project:
 - Early phase
 - Dual focus on system/design architecture and closing big trades and requirements derivation, analysis, and flow-down.

MBSE... ON EUROPA

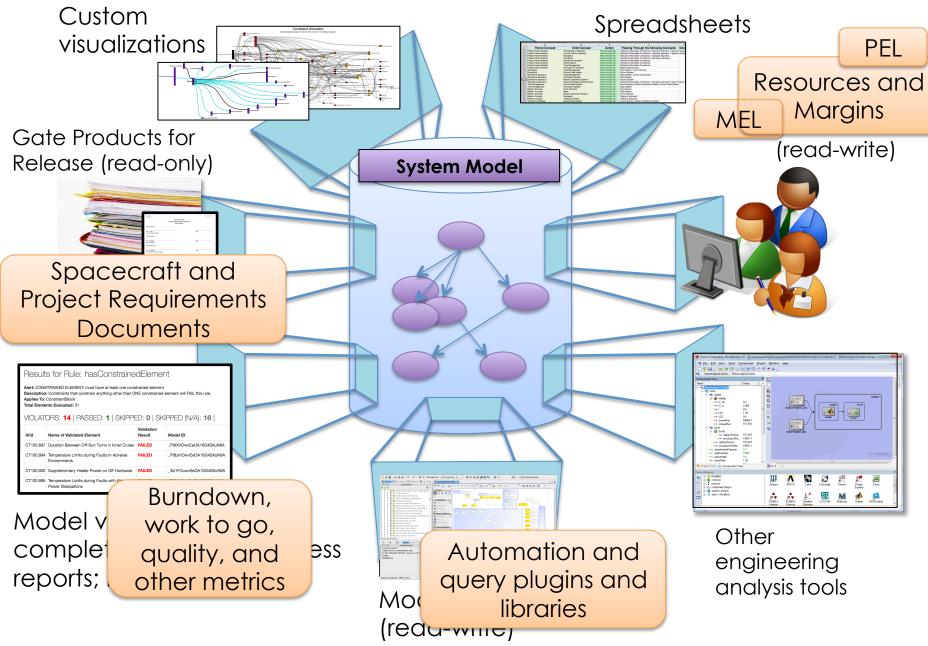
(not literally)

MBSE on the Europa Project

Europa is fully MBSE mission concept

 We use MBSE to do our SE
 MBSE is not the product

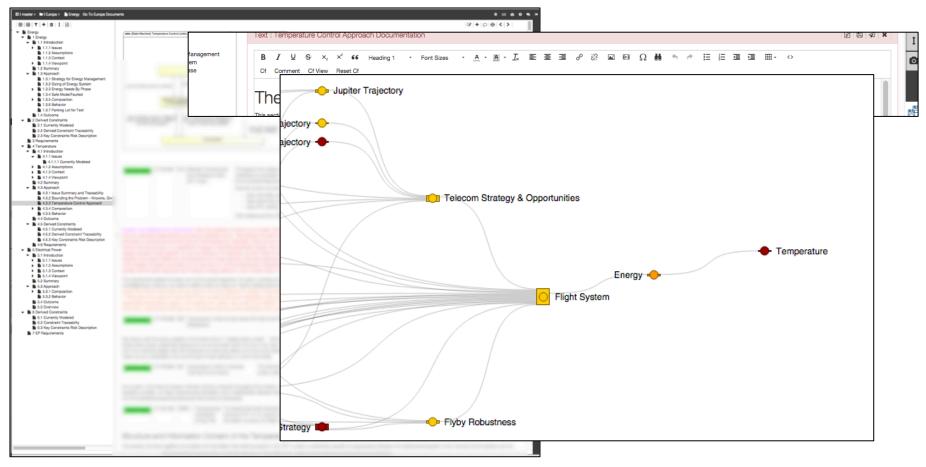
- Specifically, for our phase:
 - MELs, PELs, resource allocation and analysis, system decomposition, etc
 - All systems engineering activities
 - Requirements (derivation, justification, traceability, analysis, maturity, history, verification, document generation, metrics, etc.)
 - This talk will focus on the SE aspects



What can you do with MBSE?

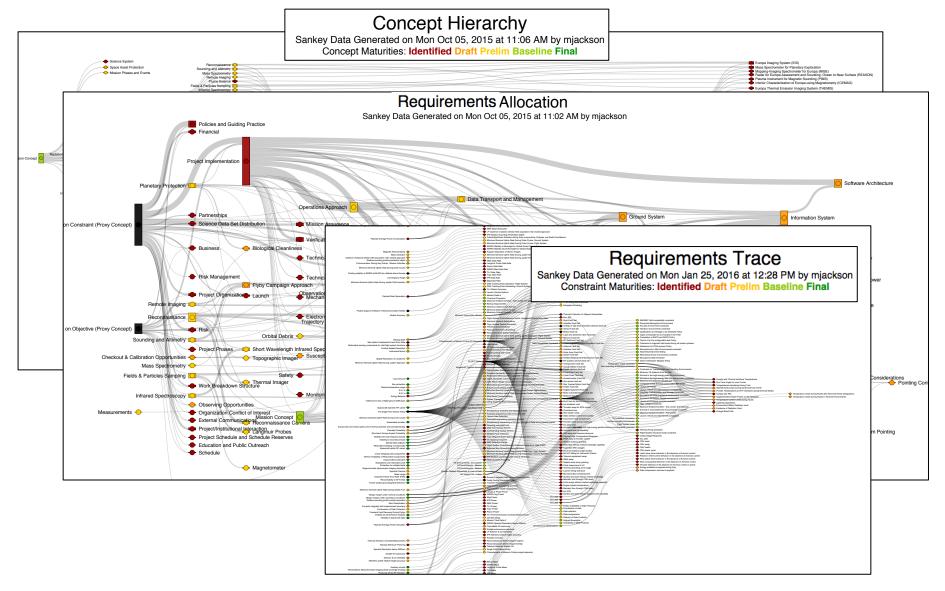
- Single Source of Truth
 - Multiple interfaces (tailored), no confusion
 - Living, interlinked, customized views of data
- Automated generation of traditional and nontraditional documents
 - Gate products
 - Release documents
 - Analysis products, spreadsheets, visualizations, etc.
- Semantically rich (and rigorous) patterns for expressing SE knowledge
 - Reduces interpretation confusion
 - Forces clarity, completeness, correctness
 - Machine analyzable and queryable

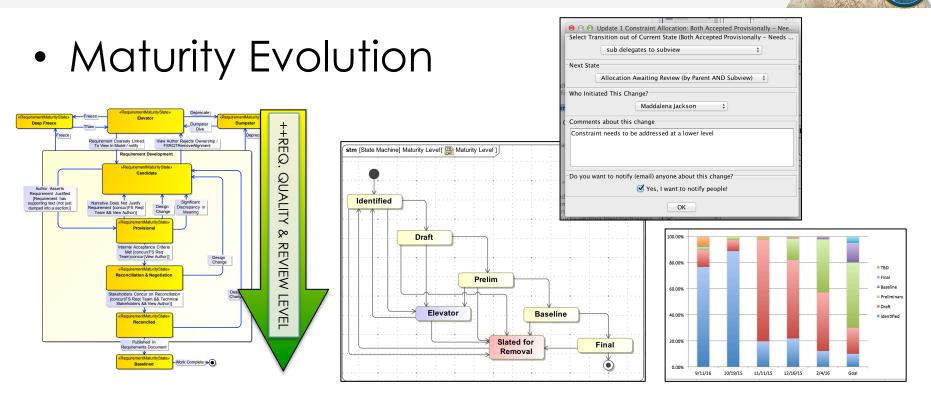
What does the Europa Project do with that?

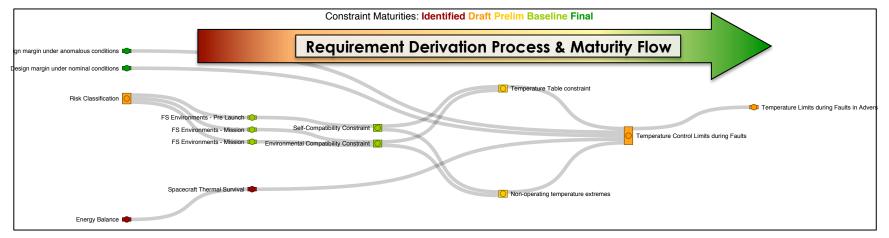

EUROPA

Requirements → documents
Requirements → traceability

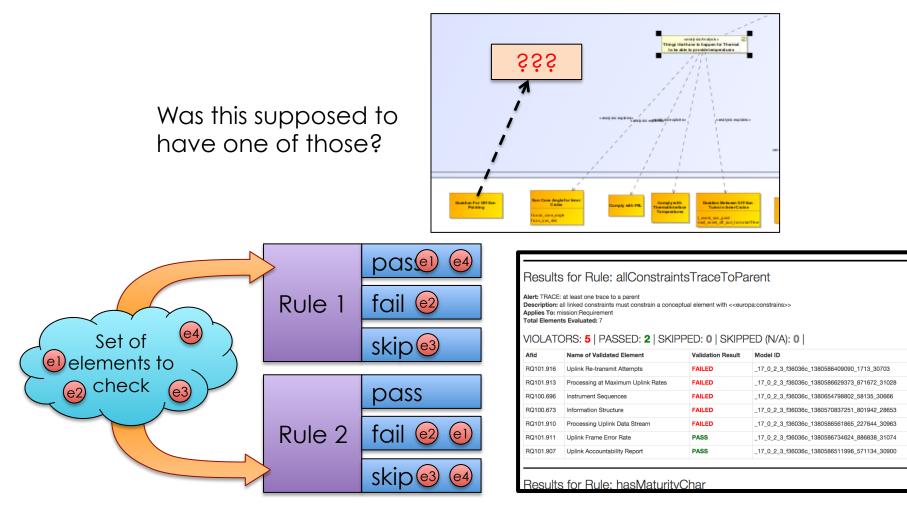
imaster > 1=1 Europa > 1=1 Europa Spaceconst Requirements Document (0 (0) Y + 0 1 0 1	Do To Europe Documents		Parent Requirement(s)	Child Requirement(s)
Europa Spacecraft Requirer Comments 1.1 Introduction 1.2 Scope 2.4.1 Power		•		
1.3 Document Contex 1.3.1 Definitions 1.3.2 Document Tn 1.3.2 Document Tn 1.4 Guiding and Acpix Power generation during sel	ar panel illumination	1	RQ103.735 - Energy Balance	RQ101.691 - Supplementar
 1.5 Relation 1.6 Require 2 Requirement ▼ 2.1 Mechan 		۵	Duluitoo	RQ104.302 - Instrument He
 <u>8</u> 2.11 Cr <u>8</u> 2.12 Ar <u>8</u> 2.13 Vr <u>8</u> 2.13 Vr <u>8</u> 2.14 Mr <u>8</u> 2.15 St <u>8</u> 2.2 Mass a <u>8</u> 2.2 Mass a <u>8</u> 2.2 Mass a 		Allow Barris		RQ101.041 - Operate fluid p
				RQ102.584 - Temperatures
	Max Thermal Internal Dissipation 🔶		an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final	son
Energy Balance 🔶	Max Thermal Internal Dissipation 🔶 Spacecraft Thermal Survival 🔶	Sankey Data Generated on Mon J	an 25, 2016 at 12:28 PM by mjacks	son
Energy Balance 🔶		Sankey Data Generated on Mon J	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final	SON tary Heater Power on Off Hardware
Energy Balance 🔶		Sankey Data Generated on Mon J	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flu	tary Heater Power on Off Hardware id pumps during dynamic/shock events
	Spacecraft Thermal Survival	Sankey Data Generated on Mon J	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flui	tary Heater Power on Off Hardware id pumps during dynamic/shock events re Limits in Adverse Thermal Environments
	Spacecraft Thermal Survival	Sankey Data Generated on Mon J Constraint Maturities: Identif	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final	tary Heater Power on Off Hardware id pumps during dynamic/shock events
FS Self-Compatibility Constraint 🔶	Spacecraft Thermal Survival Constr FS Environments - Mission	Sankey Data Generated on Mon J Constraint Maturities: Identif	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flu Temperatur Maintain Co	tary Heater Power on Off Hardware id pumps during dynamic/shock events re Limits in Adverse Thermal Environments re Limits during Faults with Abnormal Power Dissipations
	Spacecraft Thermal Survival 🔶	Sankey Data Generated on Mon J Constraint Maturities: Identif	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flui Temperatur Maintain Co Temperatur Comply with	tary Heater Power on Off Hardware id pumps during dynamic/shock events re Limits in Adverse Thermal Environments re Limits during Faults with Abnormal Power Dissipations omponents and Interfaces within AFT Limits res maintained during Test h Thermal Interface Temperatures
FS Self-Compatibility Constraint 🔶	Spacecraft Thermal Survival Constr FS Environments - Mission	Sankey Data Generated on Mon J Constraint Maturities: Identif	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flui Temperatur Maintain CC Temperatur Comply wit Sun Cone A	tary Heater Power on Off Hardware id pumps during dynamic/shock events re Limits in Adverse Thermal Environments re Limits during Faults with Abnormal Power Dissipations omponents and Interfaces within AFT Limits res maintained during Test n Thermal Interface Temperatures Angle for Inner Cruise
FS Self-Compatibility Constraint 🔶	Spacecraft Thermal Survival Constr FS Environments - Mission	Sankey Data Generated on Mon J Constraint Maturities: Identif	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flui Temperatur Maintain CC Temperatur Comply witt Sun Core J Comply witt	tary Heater Power on Off Hardware id pumps during dynamic/shock events re Limits in Adverse Thermal Environments re Limits during Faults with Abnormal Power Dissipations omponents and Interfaces within AFT Limits res maintained during Test n Thermal Interface Temperatures Angle for Inner Cruise
FS Self-Compatibility Constraint 🔶	Spacecraft Thermal Survival Constr FS Environments - Mission	Sankey Data Generated on Mon J Constraint Maturities: Identif	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flui Temperatur Maintain CC Temperatur Comply witt Sun Core J Comply witt	tary Heater Power on Off Hardware id pumps during dynamic/shock events re Limits in Adverse Thermal Environments re Limits during Faults with Abnormal Power Dissipations omponents and Interfaces within AFT Limits res maintained during Test in Thermal Interface Temperatures angle for Inner Cruise in PEL
FS Self-Compatibility Constraint 🔶	Spacecraft Thermal Survival Constr FS Environments - Mission	Sankey Data Generated on Mon J Constraint Maturities: Identif	an 25, 2016 at 12:28 PM by mjacks ied Draft Prelim Baseline Final Supplemen Operate flui Temperatur Maintain CC Temperatur Comply witt Sun Core J Comply witt	tary Heater Power on Off Hardware id pumps during dynamic/shock events re Limits in Adverse Thermal Environments re Limits during Faults with Abnormal Power Dissipations omponents and Interfaces within AFT Limits res maintained during Test in Thermal Interface Temperatures angle for Inner Cruise in PEL




- Requirements context, rationale, justification, narrative
- "Functional" decomposition



• Traceability



• Metrics! Validation! History!

Also: store records in model; generate metrics

What else (if only there was more time...)

- Requirements \rightarrow traceability
- Requirements context, rationale, justification, narrative
- "Functional" decomposition
- Maturity Evolution
- Metrics! Validation! History!
- MEL, PEL, resources, margin
- Point design
- Instrument fact sheets
- System block diagrams

- MBSE is not a product
- Intangible benefits:
 - Information consistency: reduced overhead, increased confidence
 - No "where's the latest" confusion
 - Propagation of changes
 - Drives out assumptions (and forces clarity)
 - Changes tracked and versioned
 - Ease of communicating and maintaining current project baseline
 - Cross-training/experience for earliercareer engineers

Reality check

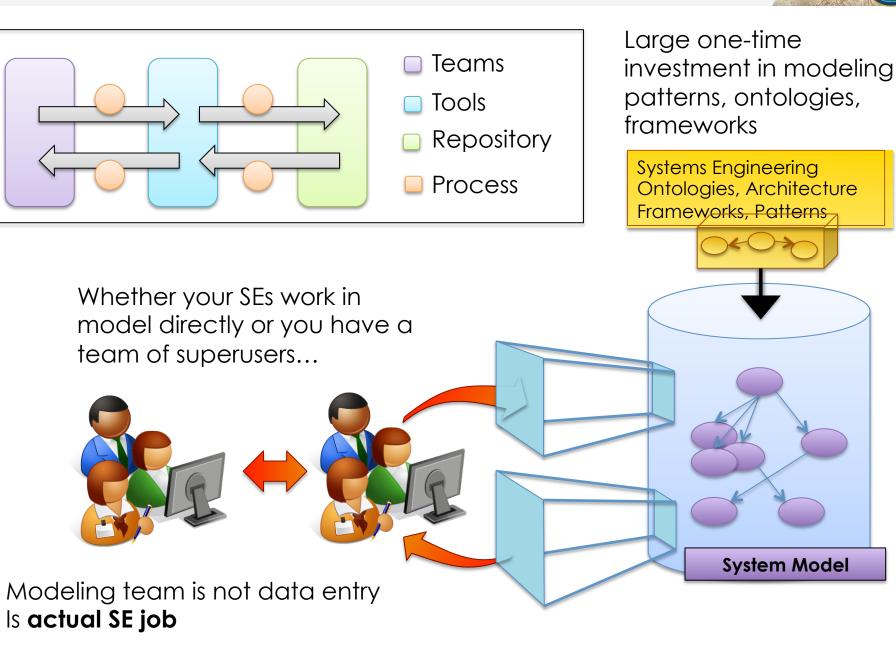
- MBSE is not trivial
 - Efforts require systems engineering, management, planning, discipline
- "Modeling" is not a data entry job
 - MBSE is simply a way of doing systems engineering.
 - People who become skilled at modeling are still primarily systems engineers (with a different tool of choice)
- There are growing pains and upfront engineering costs
- Do we think it's worth it? Yes!

LET'S TALK LOGISTICS

Unique Europa challenges:

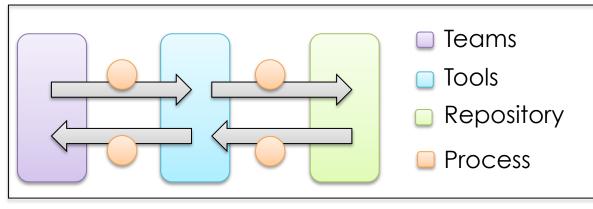
- Scope: trying to capture information from across the project, content from >40 people who need to interact with the environment in some way. 10-15 people working in the modeling tool.
- **Tooling**: Needed to build infrastructure (automation, web interfaces, query and analysis, etc.)
 - Challenge: it is being developed as MBSE approach is applied.
- Architecture Framework: project chose to use an approach to architecting and requirements development that is new to many on project.

Staffing for operation, training, and development of new tools


- Knowledge representation

 Need precise semantics in order to model
- Information organization and storage

• Process


People

Teams, Tools, Process

- Staffing of teams
 - Mix of career levels
 - Mix of skills (traditional SE vs software)
- Selection/development of tools
 - Leverage OTS when possible
 - ...but we have significant and ongoing development of supporting infrastructure
 - Good: all projects can re-use
 - Bad: can be frustrating, incur all of one-time expense
- Process
 - Have had to do a lot of process engineering
 - Good: clarity, formality, automation
 - Bad: "well this will be easy!" => unpleasant surprises

RECOMMENDATIONS

- Apply SE and actively manage MBSE
 - You should have modeling **requirements**
 - Success criteria for modeling effort
 - Specific products (documents, analyses, etc.)
 - Do not model for the sake of modeling
- Before you model...
 - Agree on information model (knowledge representation)
 - Use cases, scenarios (drive out unknown unknowns in knowledge representation)
 - What can you do with "vanilla" tools? What additional features do you want/need?

- Choosing your team
 - Do you want your SEs to be modelers?
 - Do you want to train them?
 - Do they want to learn?
 - SE $\leftarrow \rightarrow$ modeler:
 - Good: cross-training, exposure, target skills
 - Bad: bottlenecks, lag
 - SE/Software combination is very effective
 - Do you need something beyond your MBSE tool? Then you will need developers
 - Personal bias: SEs who code 😊
 - I've seen what people do with excel...
 - Get everyone talking algorithms

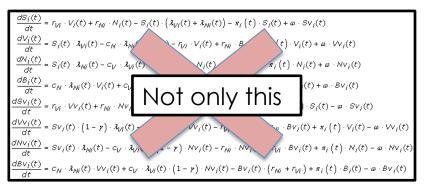
- MBSE is not a product
- MBSE efforts need to be scoped and managed as real projects

 Because they are
- Decide what success looks like before you start

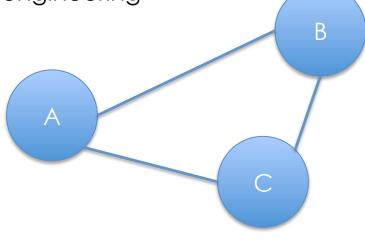
• Enjoy!

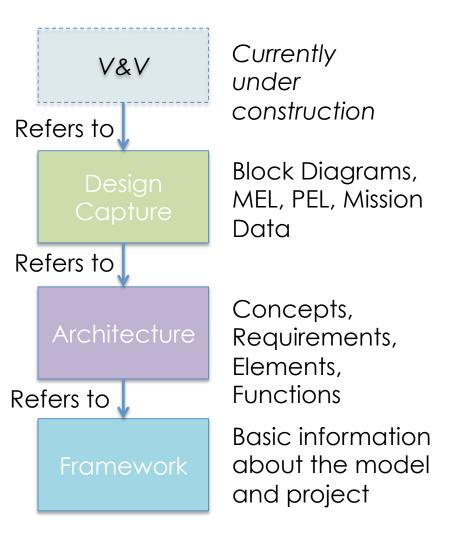
Acknowledgements

- Alek Kerzhner, Todd Bayer, Brian Cooke, Marcus Wilkerson – slide cannibalism inspiration
- MSET and FSRQT for hard work and support in making MBSE viable
- PSE and FSE
- JPL Integrated Model Centric Engineering (IMCE)
- JPL Computer-Aided Engineering (CAE)

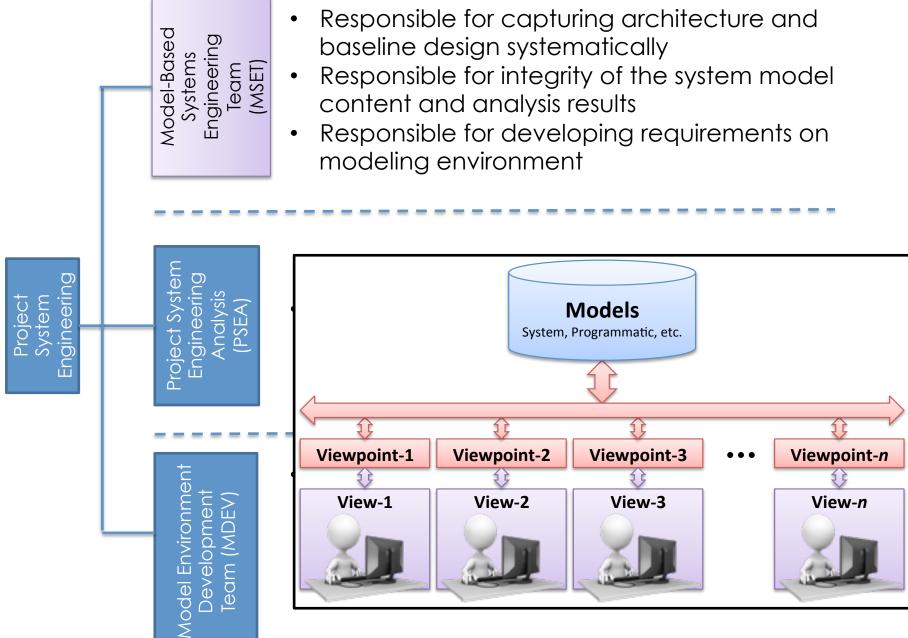


BACKUP




What is the System Model?

"Model" is a very broad term


System Model: Model of the system to support systems engineering

What problems does MBSE try to address?

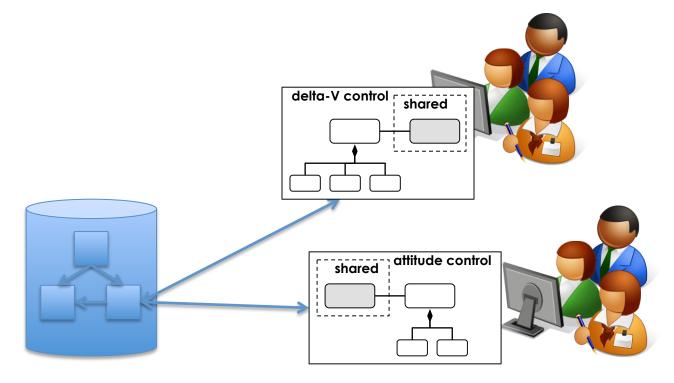
- Gaps and issues in project design because of implicit assumptions
- Inconsistency between information sources (project documents, etc.):
 - Disconnected tools with their own data store: inconsistent or incorrect analysis results
- Communicating and maintaining current project baseline
- Common changes need to be made separately to all information sources
 - Bigger issue when you have multiple variants
 - Bigger issue when you have a large # of information sources
- Tracking changes to the project baseline over time
- What to do with our early career hires & interns?

Value Proposition

- Better Products delivered More Efficiently:
 - Model repository can act as a single source of truth
 - By providing a structured and interconnected representation, consistency can be maintained
 - Capturing information in a structured way can reduce implicit assumptions
 - Validation of model structure can identify gaps and inconsistencies
 - Common changes can be made in one place and propagated to various products via automated transformations
 - The impact of changes can be identified by tracing relationships
 - System level analyses can utilize the model to produce consistent results

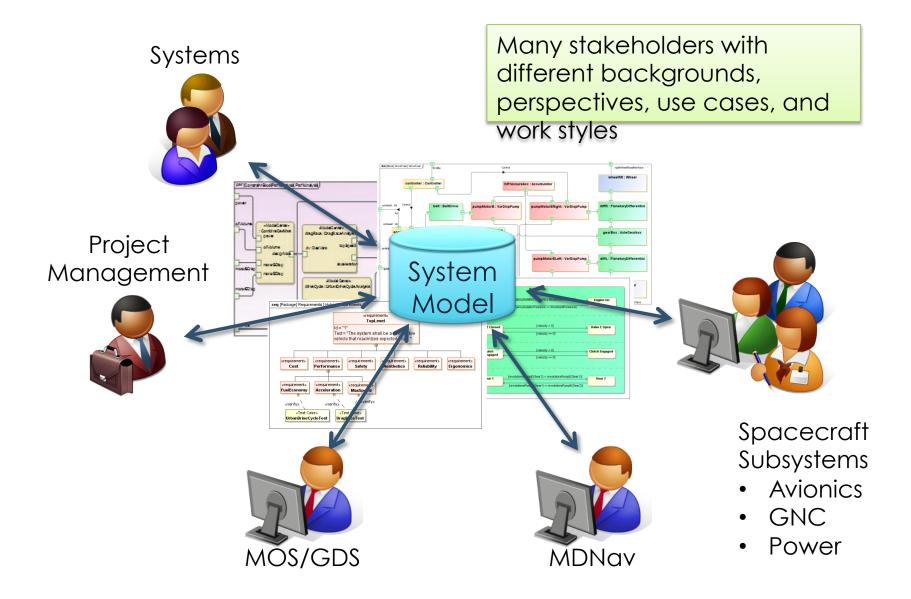
Conclusion – From Brian Cooke (PSE)

- The Europa Project concept has embraced MBSE as core to our formulation effort
- Product development and release efficiency improvement realized (and getting better)
- Some SE process improvement realized with much more to come
- Sh MBSE is ready to support flagship class b mission formulation



- SysML & MagicDraw These are just tools that allow us to implement MBSE
- A particular toolset or methodology
- The solution to all our problems

Single source of truth



The same piece of underlying information will show up in multiple views.

- Which is the one to edit?
- Which one is the source of truth?
- Who can edit what?
- What happens if someone else edits it?

Case Study: "Automatic Document Generation"

- Often, gate products need to be delivered in a particular format and signed by the appropriate parties
- For MBSE to be successful, the information in the repository needs to be easily translated into this

	IP Ini
Europa Project	B
	A
Project Requirements Document Initial Release	B Pr
	0
	L. Pr
	R. Pr
	V. Pr
Paper copies of this document may not be current and should not be relied on for official purposes. The current version is available in PDMS, https://pdms.jtp.imsas.gov	
The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an expert authorization. Pre-Decisional Information — For Planning and Discussion Purposes Only.	
August 11th 2015 JPL D-92259	
JPL	Jan Ca
Int Propulsion Laboratory California Justicar of Technology	

Initial Release		August 11th
	Europa Proje Project Requirements Initial Releas	Document
PREPARED BY:		
B. C. Cooke Project System Engineer		Date
APPROVED BY:		
B. G. Goldstein Project Manager		Date
CONCURRED BY:		
L. A. Cangahuala Project Mission System M	lanager	Date
R. Crum Project Spacecraft Manage	er	Date
V. C. Thomas Project Payload Manager		Date
JPL Jet Propulsion Laboratory California Institutie of Technology		

This is often thought of as "push button"

LESSONS LEARNED

- Patterns (aka Data Structures):
 - Identify an approach for what needs to be captured, and try to maintain that scope.
 - Keep it flexible but remember diminishing returns. Refactoring can always be done later.
 - Flight the urge to make "rapid" changes when unexpected corner cases arise -> need to keep whole team on the same page.
- Communicating with the Project:
 - Keep terminology consistent, avoid jargon.
 - Make sure value is clearly communicated, be upfront about gaps.

- The MBSE effort combining people, processes, & software tools is it's own system.
- The value of employing an MBSE effort depends strongly on the particular implementation.
- Consistency matters but need to be flexible.
- MBSE is not a magical solution: the effort needs to be considered in staffing, resources, and schedule.