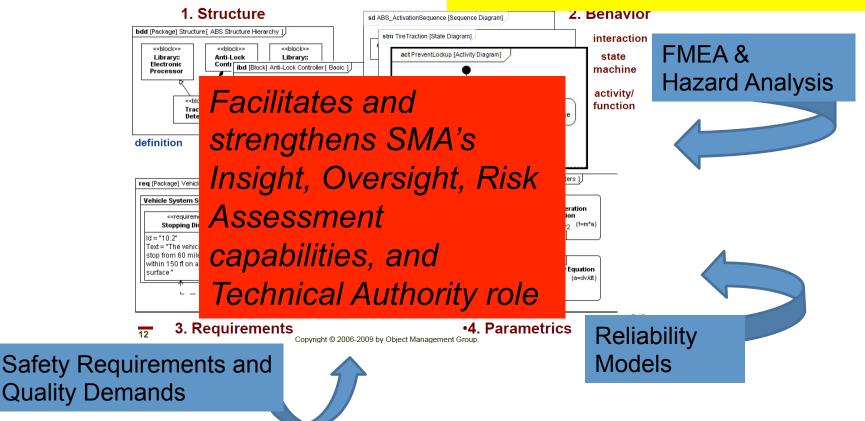
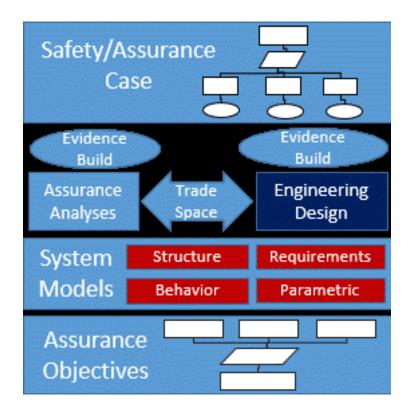


Model Based Mission Assurance

Tony DiVenti, Branch Head – Reliability and Risk Analysis (Code 371), Goddard Space Flight Center


John W. Evans, Office of Safety and Mission Assurance, NASA HQ

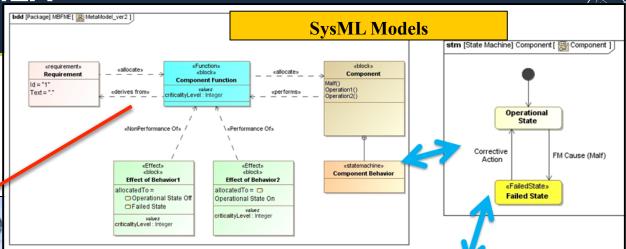
MBSE – How does SMA fit in

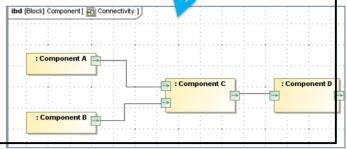

Assurance products modified to fit into a model based environment

MBMA – Model Based Mission Assurance

Example - MBSE FMEA

Courtesy Lui Wang Johnson Space Center

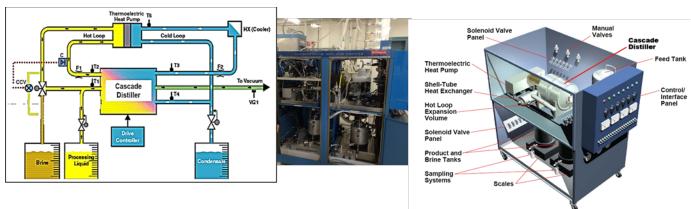

Magic Draw Plug-Ins

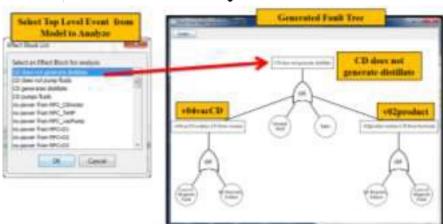


FMECA Output

Failure Modes and Effects Criticality Ana

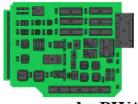
Project Name: Fan in the Can SysML Model

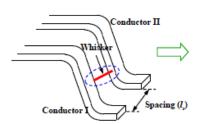



System	Subsystem	LRU/ Assembly Type	LRU/ Assembly Name	Item Function	Potential Failure Mode	Effect				CRIT		Potential
						Immediate Failure Effect	End Effect	Number of Independent	Other Independent Failures	LEVEL	SEV	Causes
FaninCan	ECLSS	CCAA	CCAA1	CCAA1 Ciruculates Air	Failed Off	Loss of CCAA1 air Circultation	Loss of CCAA1 air Circultation	1		1		Internal Malf
FaninCan	Power Subsystem	MBSU	MBSU1	MBSU_Distribute _Power	Failed Off	Loss_of_Mbsu1_output_pow er	Loss of CCAA1 air Circultation	2	MBSU2 Failed Off	1		insertInterna Ma
FaninCan	Power Subsystem	MBSU	MBSU1	MBSU_Distribute _Power	Failed On	MBSU1_Ouput_Power_On						insertInternal2N
FaninCan	Power Subsystem	MBSU	MBSU1	MBSU_Distribute _Power	Failed On	Loss_of_ability_to_manage_ MBSU1_loads						insertInterna (2)
FaninCan	Power Subsystem	MBSU	MBSU2	MBSU_Distribute _Power	Failed Off	Loss_of_Mbsu2_output_pow er	Loss of CCAA1 air Circultation	2	MBSU1 Failed Off	1		insertInterna Ma
FaninCan	Power Subsystem	MBSU	MBSU2	MBSU_Distribute _Power		MBSU2_Ouput_Power_On						insertInterna 21
FaninCan	Power Subsystem	MBSU	MBSU2	MBSU_Distribute _Power	Failed On	Loss_of_ability_to_manage_ MBSU2_loads						insertInternal2N
FaninCan	Power Subsystem	PDU	PDU1	PDU_Distribute_ Power	Failed Off		Loss of CCAA1 air Circultation	1		1		insertInterna Ma
FaninCan	Power	PDU	PDU1	PDU_Distribute_	Failed On S	PDH_Output_Power_On						in e inter /a 2.
	-								DEFICE OF	SAFETY	S MISS	SION ASSURAN

Example - CDS System Fault Tree

Courtesy Lui Wang Johnson Space Center




FY16 Planned Collaboration – UMD Center for Advanced Life Cycle Engineering (CALCE)

Simulation Assisted Reliability Assessment (SARA®) Software

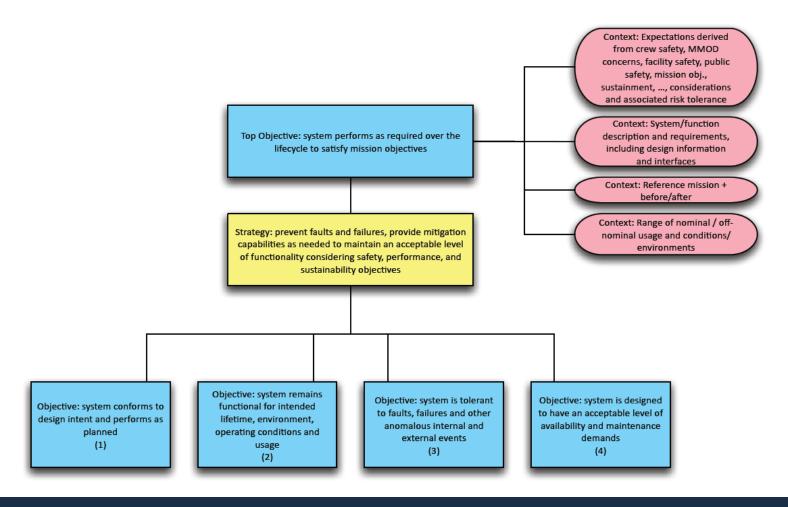
calcePWA Circuit Card Assemblies

Thermal Analysis Vibrational Analysis Shock Analysis Failure Analysis

calceTinWhisker FailureRiskCalculator

calceEP
Device andPackage
Failure Analysis

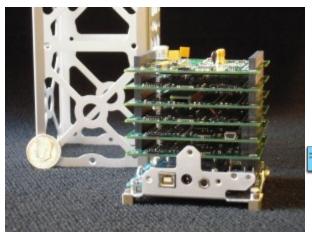
Failure Assessment Software Toolkit

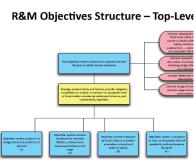

- GSFC has access to CALCE SARA® software to perform in depth parts reliability analysis
- A system model that links to SARA® could produce more accurate reliability analyses
- MBSE provides a framework to support this activity

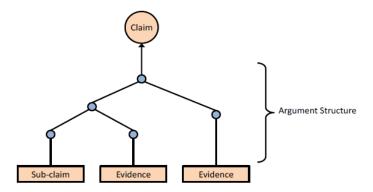
Objectives Based Assurance

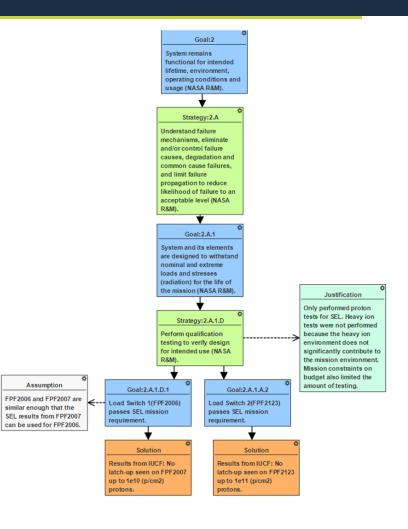
R&M Objectives Structure – Top-Level

Laying the Foundation


- Logically decompose top-level R&M objective
 - Use elements of the Goal Structuring Notation
 - Structure shows why strategies are to be applied


- Structure forms basis for a proposed R&M standard
 - Specifies the technical considerations to be addressed by projects
 - Forms basis for evaluation of plans, design, and assurance products




Assurance Case

Summary

- MBSE provides an unprecedented opportunity to integrate SMA and Engineering Analysis concurrently as part of a common modeling framework.
- MBMA, part of the MBSE environment, facilitates and enhances SMA's analytical and risk assessment capabilities.
- MBSE and MBMA fully supports GSFC's Risk Based SMA Approach and the Agency's R&M Objectives Structure and as part of a larger Safety/Assurance Case.