

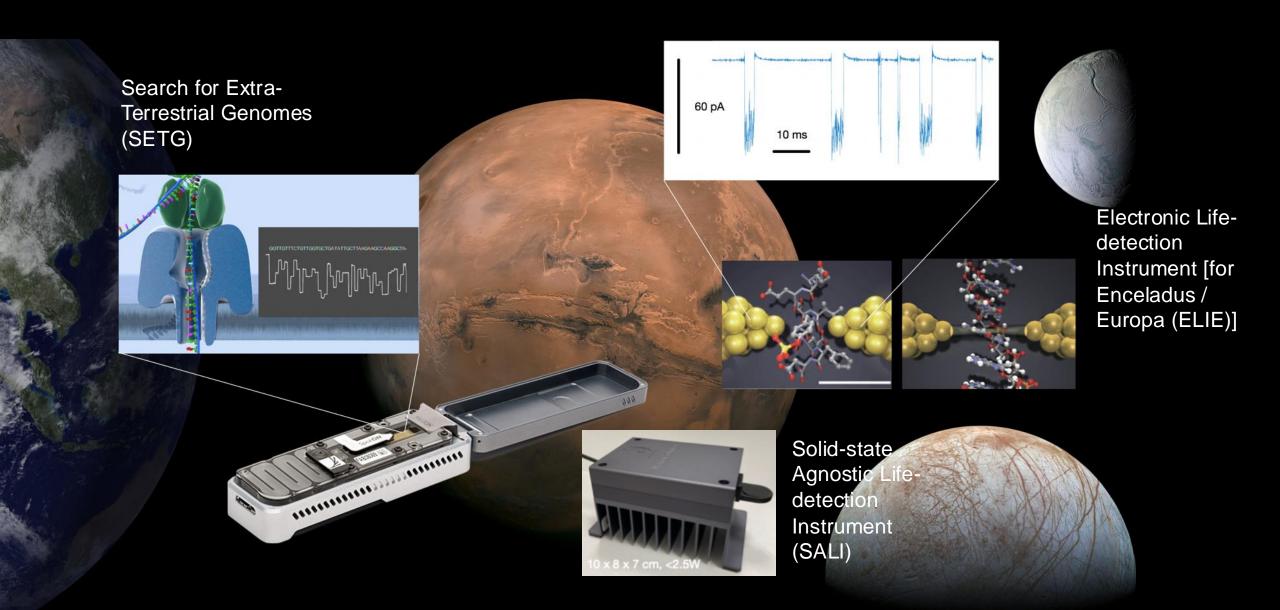
PLANETARY PROTECTION

METAGENOMICS IN SPACEFLIGHT: ESTABLISHING AN IMPLEMENTATION ROADMAP

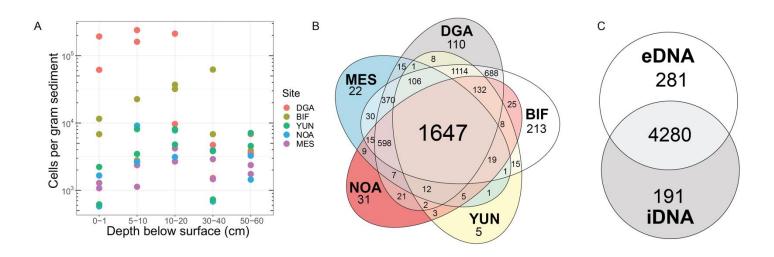
NASA AMES | NOVEMBER 19-22

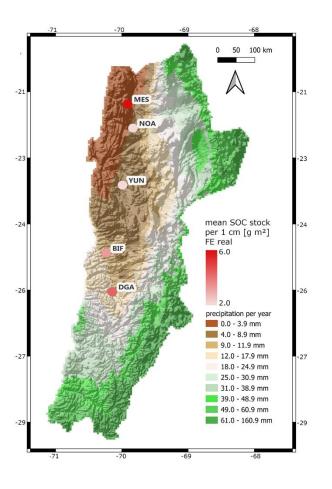
Low Biomass Metagenomics and Implications for Planetary Protection

Christopher E. Carr


Assistant Professor, School of Aerospace Engineering & School of Earth and Atmospheric Sciences, Georgia Institute of Technology
Co-Director, Astrobiology Program, Georgia Institute of Technology
cecarr@gatech.edu

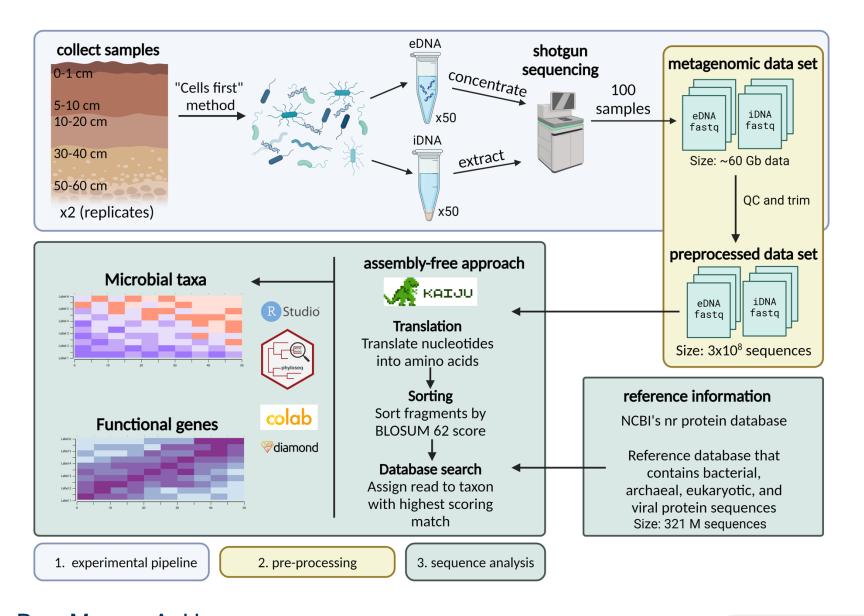
Sensitive, specific, and agnostic methods for life detection




Atacama Low Biomass Metagenomics

Ultra-low biomass metagenomics in the Atacama hyperarid core

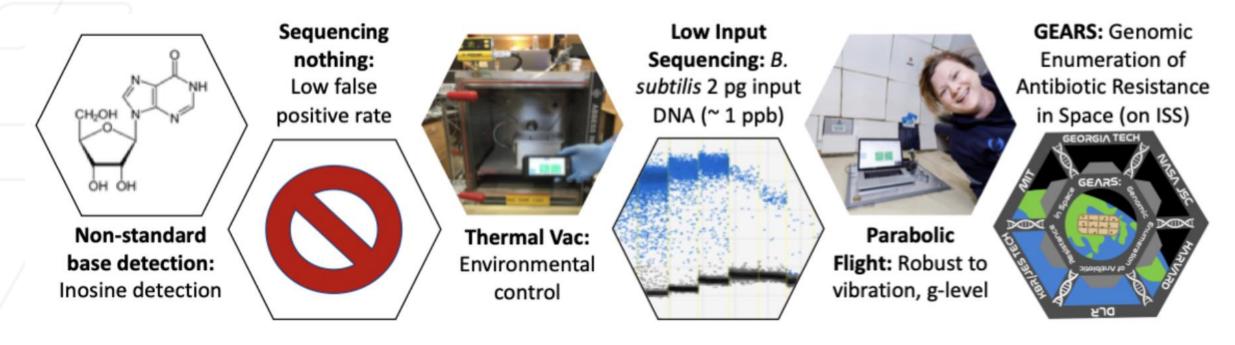
- How do microbes adapt to dry conditions?
- Prior work (e.g., Schulze-Makuch et al. PNAS 2018) counted 16S genes but inadequate DNA for metagenomics
- Carried out expedition in 2022 via South-North transect in the hyper-arid core, followed by metagenomic sequencing



Rachel A. Moore, Diana Boy, Jens Boy, Marcus A. Horn, Georg Guggenberger, Armando Azua-Bustos, Christopher E. Carr (*in review*) Preprint: ResearchSquare https://doi.org/10.21203/rs.3.rs-5241557/v1

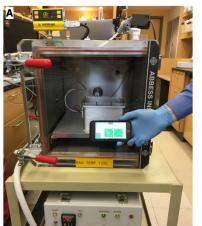
Methods

- How?
- Big sample size, up to 100 g
- Elaborate extraction process
- Quantification of subng extracted DNA (off-label Qubit usage via calibration c/o Dr. Christina Davis)
- NEB Next Ultra II library prep + Illumina (sub-ng libraries)


Rachel A. Moore, Diana Boy, Jens Boy, Marcus A. Horn, Georg Guggenberger, Armando Azua-Bustos, Christopher E. Carr (*in review*) Preprint: ResearchSquare https://doi.org/10.21203/rs.3.rs-5241557/v1

Low-input nanopore sequencing

SETG Selected Highlights



- Tested limits of MinION nanopore sequencing.
- Automated sample-in to sequence out on the bench (TRL4)
- Can we move this technology closer to in-space use?

Low-input nanopore sequencing under Mars-like conditions

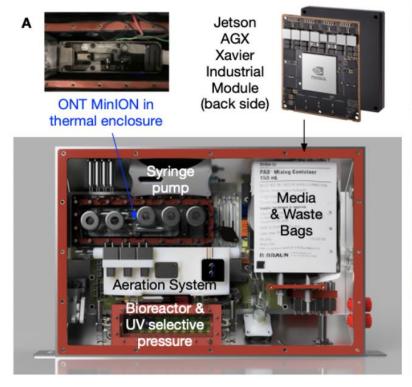
- Library: 1100 ng Lambda,
 0.2 ng (200 pg) B. subtilis
 W23 (equivalent to ~5 x
 10⁴ spores)
- "Mars": -60°C, 400-500 Pa
- 2.4 hrs at "Mars" then to 48 hrs in the lab.

	-			•
	On "Mars"	On "Desk"	Total	
Sequencing Data				
Sequencing Time	2.38	37.93	40.31	hours
Total Reads	59,649	718,433	778,082	
Total Bases	450,391,859	6,022,122,138	6,472,513,997	bases
Mean Length	7550	8382	-	bases
Min Length	6	5	5	bases
Max Length	131,307	158,250	158,250	bases
Mapping (BWA)				
Lambda Reads	59,461	717,249	776,710	bases
Lambda Bases	450,247,113	6,020,985,496	6,471,232,609	bases
B. subtilis (W23) Reads	188	1,184	1,372	bases
B. subtilis (W23) Bases	144,746	1,126,642	1,271,388	bases
Ratio by Reads	316	606	566	Lambda / B. subtil
Ratio by Bases	3111	5344	5090	

Ratio by bases similar to DNA ratio of 5500:1

Nanopore sequencing with 2 pg DNA (circa 2018)

- Mars regolith simulants extraction from ~10⁴ spores in 50 mg regolith
- Defined threshold performance as achieving 5% extraction yield
- Sequencing: 1000 ng lambda (8 kb) + 2 pg B. subtilus DNA to ~5 x 10² spores
- Used digital droplet PCR for spore counting
- MinION Mk1B, R9.4 flowcells, SQK-LSK108 kit, Albacore 1.1 basecalling


Table 1. Low-Input Carrier Sequencing Metrics


	Number of reads		Min length		Max length		Median length		Total bases	
All reads (Lambda + B. subtilis + Contamination + HQNRs)	1,303,007	reads	16	bases	501,249	bases	6,493	bases	8,698,026,598	bases
Target reads (B. subtilis + Contamination + HQNRs)	29	reads	267	bases	1,559	bases	595	bases	19,981	bases
B. subtilis reads Contamination reads HQNRs	5 6	reads reads	848 267	bases bases	1,559 865	bases bases	967 453		5,270 2,933	bases bases

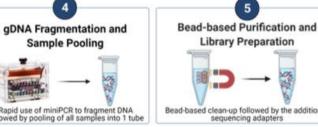
actual ratio 8698026598/5270 = 1.65M:1 theoretical ratio: 1000 ng / 2 pg = 0.5M:1

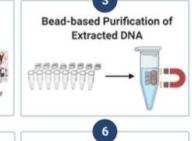
Biological Exploration 2 (BioX2) Payload

- Bioreactor
- UV selective pressure (LEDs)
- Isolated lysis module
- Isolated MinION with loading fluidics
- GPU computer for basecalling
- Ground-based validation of automated sequencing, zero-mass payloads
- Fall 2022 launch; MinION USB cable sheared on launch (inadequate stress relief)
- On-orbit basecalling and genome assembly (pre-loaded reads)

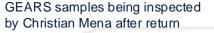
Genomic Enumeration of Antibiotic Resistance in Space (GEARS)

- The first of up to 4 GEARS missions launched (Mar 21) and returned on SpX-30 (Apr 30).
- GEARS is quantifying the abundance of antibioticresistant bacterial strains on ISS surfaces.
- GEARS leverages on-orbit genomic sequencing and complementary ground analyses.
- Subsequent GEARS missions will enable longitudinal analyses of antibiotic resistance (Next iterations on SpX-31 and SpX-32).

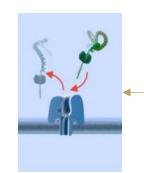



Co-PI: Sarah Wallace, Ph.D. PhD student; Jordan McKaig NASA JSC Georgia Tech

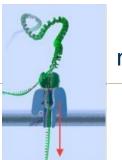
Astronaut Dr. Michael Barrett preparing sequencing libraries



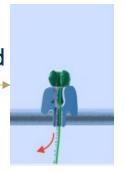
The future



Future studies needed

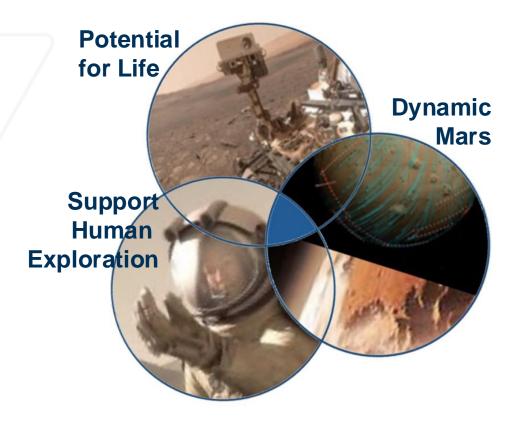

- IDT xGen[™] ssDNA & Low-Input DNA Library Preparation
 - Down to 10 pg input, works with both ssDNA and dsDNA, multiplex up to 1536 samples
- Make library for Illumina, optionally sequence on MinION (short fragment mode)
- ONT TraxION hands-off library prep & optimize for low-input (minimize external contamination)
- ONT MinION <u>adaptive sampling</u> with depletion mode (lambda background)
 - Lambda is most of the reads; if read maps to lambda the molecule is rejected
 - Could result in low pore occupancy; requires testing to validate efficacy

MinION adaptive sampling with depletion mode


Lambda DNA ejected

Lambda detected

Lambda not detected

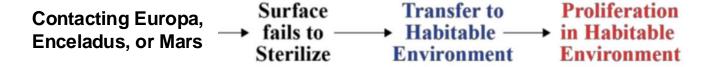

Entire molecule sequenced

Preparing for multiple life detection missions

 Near-earth payloads can advance cis-lunar exploration <u>and</u> help us prepare for astrobiology and planetary science missions – and make PP assessments

Low-cost & life detection missions at Mars

Use the moon as a testbed for Planetary Protection Example: Lee et al., "SOTERIA: Searching for Organisms Through Equipment Recovery at Impact Areas" (2020); https://ntrs.nasa.gov/citations/20205007157.



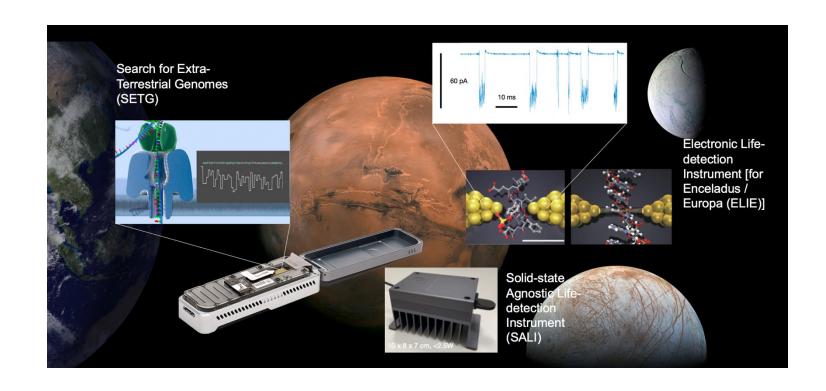
Incorporating growth into risk assessment

- Prior risk assessment (e.g., McCoy et al. 2021, Europa Clipper) considers detailed mission events leading to sterilization and transfer to habitable environment
- Current standard (e.g., NASA-STD-8719.27) based on occurrence of inoculation of viable microbe into habitable environment and/or total bioburden (see Table 4-3)
- Should we also consider growth potential in habitable environment?
- If yes, then metagenomics may be able to be used to infer growth temperature on a population basis
- Could we change "contamination avoidance" to "consequence avoidance"?
- Proposal: Prediction and Verification of Growth Temperature Range for Spacecraft Cleanroom Associated Microbes
- Challenge: Predict growth temperature from genome – especially poor for psychrophiles

Mission Description	Probability Assessment		Value Less Than	Duration or Timing	
Category III or IV missions			1.0 x 10 ⁻²	20 Years after	
conducting trajectories and		Inadvertent	Probability	Launcha	
maneuvers in the vicinity of	Contamination Avoidance of Mars	Impact of Mars	AND		
Mars (e.g., fly-by, gravity assist, or orbital) or launches from the surface of Mars			5.0 x 10 ⁻²	20 to 50	
			Probability	Years after	
				Launcha	
			OR		
			5.0×10^5	At Launch	
		Total	Spores	OR	
		Bioburden		At Impact at	
		Level		the Martian	
				Surface	
Category III or IV missions	Contamination	on Avoidance	1.0 x 10 ⁻⁴	1,000 Years ^a	
conducting a fly-by or	(occurrence for	or a biological	Probability		
gravity assist of Europa,	inoculation	event into a			
Enceladus, or other sensitive	potentially hab	oitable aqueous			
icy worlds to be determined	enviro	nment)			

a. Current period of biological exploration as defined by COSPAR approved by the COSPAR Bureau on 17 June 2020.

Final thoughts


Future planetary protection policies

- Metagenomics can be used to support science-driven probabilistic risk assessment (PRAs)
 - Relatively "standard" Illumina methods can achieve sub-ng sequencing
 - Continued advances in nanopore sequencing are likely to make it competitive for planetary protection monitoring via metagenomics
 - Future missions require working out credits carefully (e.g., Orbilander, Mars)
- Prediction of growth temperature range from genome may support limiting statistical consequence of contamination via inferred growth potential
- Challenge: What measurements would allow planetary protection policies for Mars (or elsewhere) to evolve beyond current rules?

Thank you

- Dr. Christina Davis and conference organizers
- PXL lab members
- We gratefully acknowledge support from
 - NASA MATISSE, PICASSO, Astrobiology/Exobiology, PSTAR, and Space Biology programs.
 - NSF Arctic program
 - Schmidt Futures

