
National Aeronautics and Space Administration

SYSTEM FAILURE CASE STUDIES
January 2012 Volume 6 Issue 2

Critical Software: Good Design Built Right

I

The role of software in the control and operation of flight systems
has grown dramatically since the landmark Apollo program which
ended in 1972. Guidance and navigation systems, science payloads,
environmental control systems—all critical—interface with
hardware and humans to control almost every significant event in
the flight profile. Engineers must ask, “Are we building the right
software?” Then, just as important, “Are we building the software
right?”

Software assurance and system engineers interestingly note that,
while software may display defects in design or implementation
(coding), software does not ‘fail’ after some period of proper
operation like how a metal component may fracture. Furthermore,
a software defect may not be immediately apparent, but when
exposed, the defect will operate exactly as programmed. Examples
of defects include: Function (missing requirement), Assignment
(incorrect or missing assigned value), Interface (design specifies
the interface point to a number, but the implementation points to a
character), Checking (missing or incorrect validation of parameters,
data, or a test case versus certain measures), Timing (resource
serialization is needed and missing, wrong resource serialized, or
wrong serialization technique), Relationship (traceability from
requirements to test in error or missing), Build (mistake in version
control, change management or library systems), Documentation
(inaccurate or missing information in documentation), Algorithm
(problem affecting task can be corrected by re-implementing an
algorithm instead of a design change), Project (team tasked beyond
resource capabilities), Verification method (not explained or wrong
for situation).

The following ten recent catastrophic mishaps identify the roles that
software played as significant causative factors and help recognize

the effects of failure and the lessons that can be learned from the
mishaps.

Mishaps within nasa

STS-126 Shuttle Software Anomaly

Space Shuttle Endeavour and the STS-126 crew launched on
November 14, 2008. Upon reaching orbit, the shuttle-to-ground S
band communications used during launch failed to automatically
switch to the more powerful Ka band antenna required during
orbit. Then, shuttle-payload communication, through the Payload
Signal Processor (PSP), failed
to automatically switch from its
wireless RF link to its hardwired
umbilical cable after reaching
orbit. Fortunately, mission
control was able to manually
command switchover of both
without obstructing the mission.

Investigation found that a software change had inadvertently shifted
data in the shuttle’s flight software code. Because of this build
defect, the software did not send configuration commands to the
shuttle’s Ground Command Interface Logic, and several automated
functions failed.

DART Failed Autonomous Rendezvous
Test

The DART (Demonstration for Autonomous Rendezvous
Technology) launched on April 15, 2005 and was programmed to
rendezvous with the MUBLCOM (MUtiple-path Beyond Line-
of-sight COMmunications) satellite via close range maneuver
without ground control commands. Approximately 11 hours into the
mission, DART collided with MUBLCOM. DART transitioned to
its departure and retirement sequence without accomplishing any of
the 14 mission-critical technology objectives and its fuel supply was
depleted.

During the close-range maneuvers, the navigational control for
DART failed to transition completely to the Advanced Video
Guidance Sensor (AVGS) to calculate its velocity and position
relative to MUBLCOM. This interface defect allowed DART to
approach MUBLCOM without accurate ranging information. The
collision avoidance system operated as designed, but using the same

inaccurate position and velocity information, DART collided with
MUBLCOM.

The premature retirement of DART occurred due to recurring
computational resets of its estimated position. DART’s thrusters
fired more often than planned following the resets, attempting to
correct for each new estimated position. An incorrect velocity
measurement was introduced into software during each reset. This
algorithm defect had been discovered prior to the mission but no
software change was implemented.

Loss of Communication with the SOHO
Spacecraft

The SOHO (Solar Heliospheric Observatory) spacecraft was
launched on December 2, 1995 to study the Sun from its deep core to
the outer corona and the solar wind. SOHO succeeded in many of its
goals, earning it multiple mission extensions. The first came in 1997
when software modifications were uploaded to conserve operation
of its gyroscopes. Then in 1998, another software modification
caused SOHO to lose lock
on the Sun and immediately
triggered alarms that sent the
spacecraft into an emergency
altitude control mode. During
recalibration, the spacecraft spun
out of control and its altitude had
diverged so far beyond control
that all power, communications,
and telemetry signal were lost.

Ground operators found
that a build error in the code
modifications had triggered the
initial alarm. Critical errors in
the code modified to conserve
gyro usage configured the gyros incorrectly, and caused inaccurate
thruster firings which progressively destabilized the spacecraft. It
took the ground team over 5 months to find and completely recover
SOHO.

Mars Pathfinder’s Unexpected System
Resets

The Mars Pathfinder landed on Mars in July 4, 1997. It returned
an unprecedented amount of data and outlived its primary design
life. But a few days into the mission, the lander’s onboard computer
repeatedly reset itself, slowing the flow of research data to Earth.

A timing defect in software
application code caused the
computers to continually
reboot. A small low-priority
task was unable to complete
its function during data flow to
Earth when all the high-priority
tasks were moving at high
rates. A fail-safe mechanism
in the software, which resets
the system automatically when
any performance is interrupted, rebooted the system when the glitch
occurred. NASA solved the problem by raising the priority of the
task involved and adjusting the priority of other tasking in the code.

N
Air Traffic Control Communication Loss

On September 14, 2004, the Los Angeles Air Route Traffic Control
Center lost all radio communication with 400 airplanes they were
tracking over the southwestern United States. The incident disrupted
about 800 flights across the country. The Center’s main voice
communications system shut down unexpectedly.

A function defect was found in a software upgrade to a subsystem
for the Voice Switching and Control System (VSCS). The upgrade
used a timer to send built-in test queries to the VSCS. The upgrade’s
test counter counted tests down from the highest number that the
system’s server and software could handle, counting to zero or until
reset. Procedures required a technician to reset the voice switching
system every 30 days. The upgrade had a design defect—it was pro-
grammed to shut down the VSCS without warning if the reset had
not been done, which it did when the counter reached zero after 49
days.

The FAA later implemented a software patch that periodically reset
the counter without human intervention.

Widespread Power Outage in the North-
east

On August 14, 2003,
high-voltage power lines
in northern Ohio brushed
against some overgrown
trees and switched
off. This triggered a
distribution system load
imbalance and cascading
power outage throughout
parts of the Northeastern
and Midwestern United States and Ontario, Canada. The blackout
affected an estimated 55 million people for 2 days, which contributed
to at least 11 deaths and an estimated cost of $6 billion.

January 2012 System Failure Case Studies - Good Design Built Right 2|Page

Computer systems available to local power system operators were
designed to issue alarms when detecting faults in the transmission or
generation system. Due to programming errors, these alarms failed.
System operators were not able to take steps that could have isolated
utility failures because the data-monitoring and alarm computers
were not working. Without the knowledge of line failure, operators
could not act to balance system loads and contain the failure.

A “race condition” or software timing defect was found to be
the primary cause of the grid event alarm failure. After the alarm
system failed silently, the unprocessed events started to queue up
and crashed the primary server within 30 minutes. This triggered
an automatic transfer of all applications, including the stalled alarm
system, from the primary to the backup server, which likewise
became overloaded and failed. Hardware, software and procedural
improvements followed to prevent recurrence.

MV-22 Osprey Crash
On a routine training mission on December 11, 2000, an MV-22
Osprey carrying 4 Marines crashed in a wooded area north of
Jacksonville, North Carolina, killing all on board.

It was found that the
mishap was caused by a
burst hydraulic line in one
of the Osprey’s two engine
casings. This coupled with
a software defect causing
the aircraft to accelerate
and decelerate violently
and unpredictably when the
pilots tried to compensate

for the hydraulic failure. The Marine Corps report called for a
redesign of both the hydraulics and software systems involved.

Korean Air Flight 801 Crash
On August 6, 1997, Korean Air Flight 801 approached for landing
at the Guam International Airport. Heavy rain and reduced visibility
dictated the crew to fly a precision instrument approach using the
ILS (Instrument Landing System). Air traffic controllers advised
them that the ILS glideslope equipment for the available runway
was out of service. This required the crew to monitor altitude via
altimeter only until the runway was in sight or until minimum
approach altitude reached. The aircraft struck a hill approximately
3 miles short of the runway, at an altitude of 660 feet. Of the 254
people on board, 228 were killed; the remaining 23 passengers and 3
flight attendants survived the mishap with serious injuries.

The investigation found that, while the crew failed to properly
follow the approach procedure, a ground warning system could have
alerted controllers to the unsafe descent. However, a Federal Aviation
Administration (FFA)
software change
limited spurious
alerts. The build defect
rendered the system
“almost completely
useless,” preventing
approach controllers
from warning Flight
801 of its premature
descent into the hill.

Ariane 5 Failure Forty Seconds After Lift-
Off
The Ariane 5 is an expandable launch system used to deliver payloads
into geostationary transfer orbit or low Earth orbit. On June 4, 1996,
its maiden flight ended in failure, with the rocket veering off its
flight path and self-destructing at about 40 seconds after initiation of
the flight sequence, at an altitude of about 12,000 feet.

It was found that the failure
was caused by complete loss
of trajectory guidance due
to malfunction in the control
software. Software to align
the Inertial Reference System
(IRS) had been reused from
the Ariane-4 system, but
behaved differently in the
Ariane-5. The software was
not properly tested for the
trajectory characteristics of
the new vehicle. Failure in converting 64-bit floating-point number
to a 16-bit signed integer caused an overflow condition (the 64-bit
input value was outside the range that could be handled by the 16-
bit signed integer). The assignment defect shut down the primary
inertial reference system; when control was passed to the identical
secondary inertial, it predictably suffered the same fate. Ironically,
the code containing the error had been designed for an Ariane-4
launch requirement not shared by Ariane-5 and could have been
eliminated. The onboard computer misinterpreted diagnostic data
as proper flight data (another software defect) and commanded an
abrupt maneuver that ripped the boosters from the launch vehicle
and activated the rocket’s self-destruct mechanism.

Patriot Missile Failure
On February 25, 1991,
during the Gulf War, an
American Patriot Missile
battery in Dharan, Saudi
Arabia, failed to track
and intercept an incoming
Iraqi Scud missile, which
killed 28 soldiers.

The all-weather tactical
air threat defense at
Dhahran contained a
software flaw in the
system’s weapons control
computer. This function
defect led to inaccurate
tracking calculations that
worsened over time of
operation. At the time of the fatal Scud attack, over 100 continuous
hours of operation increased the error to the degree that the Patriot
system could not track or intercept the threat.

Patriot had never before been used to defend against Scud missiles,
nor deployed to operate continuously for long periods of time.
Two weeks before the incident, Army officials received Israeli data
reporting loss in accuracy after 8 consecutive hours of operation.
While the Army modified the software to correct the defect, the
software patch did not reach Dhahran until the day after the Scud
attack.

January 2012 System Failure Case Studies - Good Design Built Right 3|Page

For Future nasa Missions

In these examples, the software did not perform as intended. One
driving objective of verification and validation is to ensure the
system software behaves as expected under adverse conditions.
NASA’s approach to validating and verifying system software
entails acquiring evidence to answer three questions:

1) Does the system software behave as expected?

2) Does the system software not do what it is not
supposed to do?

3) Does the system software behave as expected in the
presence of adverse conditions?

A system driven validation and verification approach effectively
stresses the system, testing an integrated system under various
anomalous conditions as early in development as possible to
understand and generate evidence per the three questions above.

At a minimum, a common lesson to be learned is to ensure that
project system and software development efforts consider the
Verification and Validation three perspectives (NASA’s IV&V 3
questions) and employ a system/software validation and verification
effort that does the same.

If nothing else, dedicate resources toward validating software
requirements—ensure the design is right; for changes made after
technical baselines are achieved, a revalidation from a systems
perspective is warranted. Where lives are at stake, even given
exhaustive testing, design-for-failure considerations would have
helped the MV-22 Osprey software deal with hydraulic system
damage. Engineering designs should handle faults intelligently—so
that persistent faults of the same type cannot bring down a system.
Our designs and ultimately our systems need to be more adaptable
to their environments.

The backup system for the Air Route Traffic Control Center failed
because it lacked a feature to reset its test counter. Question 3 of
verification and validation efforts, to ensure system software behaves
as expected in the presence of adverse conditions is a mitigation
strategy for many of these failures.

Design also failed the power system operators who could not
use their backup systems during the Northeast blackout in 2003.
Redundant hardware can serve against mechanical failure modes,
but supposedly redundant systems reliant on identical software
programs (like both Ariane 5 inertial reference systems) can face
common-cause failures. A validation of requirements may have
shown the importance of “features” like these and illuminated
systemic risks to decision makers if requirements were not corrected.

Workarounds stemming from software design shortfalls should be
unacceptable to designers, especially for mission critical functions
or procedures. The ability to identify when a workaround impacts
critical system aspects demands a systems perspective. That someone
needed to manually reset the clock of the FAA air traffic control
VSCS system was a precursor of failure that hindsight reveals to
us. It’s true that workarounds for the SOHO and Mars Pathfinder
missions salvaged mission objectives. But simulations using an
integrated system (even if emulated components are used) that
exhaustively run combinations of task thread priority can uncover
such problems before critical systems are operated.

When a software design is reused in a different system, it is important
to revalidate design and test operation. Investigators did not tell us
why all Ariane 4 navigation software features were retained for
Ariane 5, except to ‘be consistent.’ This intent does not recognize
that Ariane 5 hardware and requirements were different. Again a
systems understanding and a systems verification and validation
effort can mitigate the concerns of reusing (or salvaging) previously
built designs.

To facilitate good engineering practices and increase the likelihood
for success, development efforts must ensure proper controls are
in place when changing, modifying, or upgrading safety-critical
systems. Any changes, big or small, made to the software must be
properly evaluated, assessed and documented, especially changes to
safety-critical software that may affect the overall performance of the
entire system and threaten life safety. Change must be treated with
the same degree of attention as original development. This lesson
is evident in the software error found in STS-126 that disabled two
automatic functions. An update to the shuttle’s flight software code
was not properly implemented nor verified leading to the anomaly.
Another example is the mishap of Flight 801 where the Minimum
Safe Altitude Warning (MSAW) system was inhibited without fully
realizing the negative consequences. A third example is the loss
of contact with the SOHO spacecraft where critical errors in code
modifications to conserve gyro usage destabilized the spacecraft.
Good decisions about change are informed decisions; if project
managers are truly shown the negative impacts on the system, then
they can make well-informed risk decisions. Decision makers need
the “system impact” perspective but do not always receive it.

How much and what kind of testing is enough? It’s easy to say that
extensive (expensive) testing should be performed. It is realistic to
put forth a robust testing strategy that adequately stresses the system
under adverse conditions, at every level, from unit through system
test, using authentic operational and exception scenarios. This is what
validation and verification and assurance-related activities focus
on. All the tasking in the software code of the Mars Pathfinder was
exhaustively tested before the mission, but not all code was tested
at once. During the operation when the spacecraft was bombarded
by low and high priority tasks, it significantly affected the system’s
performance. The DART project began as a relatively low-cost,
high-risk effort with less rigorous software testing requirements than
projects with higher expectations of success. When DART’s mission
objectives gained importance, requirements to better ensure good
software design did not follow. Technology demonstrator projects
or projects with low-TRL (Technology Readiness Level) gain much
from verification and validation and assurance-related activities.
Stressing the system and testing off-nominal conditions is beneficial
for a project with less schedule and budget resources to cover these
aspects.

For safety-critical systems, it is important to test, not only for what
the software should do, but also for what it should not do. Ensure
the system can return to a safe state after experiencing a specific
negative occurrence, instead of simply allowing itself to reboot or
shut down.

Software should be tested over several days of equivalent mission
time to find problems such as timing errors or overrunning counters.
This would have found the glitch that would have prevented the
Patriot to decrease its efficiency when it was operated continuously
for over 100 hours.

January 2012 System Failure Case Studies - Good Design Built Right 4|Page

S
The incidents covered in this report not only led to the loss of time
and money, but also the loss of life; proof that software plays an
immense role as a causative factor to project failures in NASA and
industry.

Systems engineering and project management need to integrate
validation and verification efforts into systems integration strategies
to inform decision making by evidence of what the system software
actually does, what the system software does not do, and how the
system software behaves under adverse conditions.

To ensure good design and implementation, a proven, successful
option available to engineers is to run a software Verification and
Validation project parallel to software development. A Verification
and Validation project employing reviews, static and dynamic
analysis, testing, and formal methods can ensure software conforms
to requirements and expected operational behavior at every phase of
the project’s life cycle.

R
1. Dr. Nancy Leveson, “A Systems-Theoretic Approach to Safety in Software-Intensive
Systems,” January 2004

2. Marcus S. Fisher, “Software Verification and Validation, An Engineering and Scientific
Approach,” November 2006

3. NASA Safety Center Special Study, “Shuttle Software Anomaly,” April 2009

4. NASA System Failure Case Studies, “Fender Bender,” September 2008

5.NASA’s DART Mishap Investigation Results, 2006

6. NASA System Failure Case Studies, “The Million Mile Rescue,” November 2008

7. Final Report of SOHO Mission Interruption Joint NASA/ESA Investigation Board, 1998

8. Military and Aerospace Electronics, “NASA Tackles Pathfinder Software Glitch,”
September 1997

9. The New York Times, “Air Control Failure Disrupts Traffic,” September 15, 2004

10. IEEE Spectrum, “Lost Radio Contact Leaves Pilots on Their Own,” November 2004

11. NASA System Failure Case Studies, “Powerless,” December 2007

12. Great Northeast Power Blackout of 2003

13. CNN, Marine MV-22 Osprey Crashes During Routine Training Mission,” December
12, 2000

14. Congressional Research Service, “V-22 Osprey Tilt-Rotor Aircraft: Background and
Issues for Congress,” March 10, 2011

15. NTSB, “Abstract on Korean Air Flight 801 Conclusions, Probable Cause, and Safety
Recommendations,” 1997

16. Inquiry Board, “Ariane 5 Flight 501 Failure Report,” July 1996

17. ESA Press Release, July 23, 1996

18. GAO Report, “Patriot Missile Defense – Software Problem Led to System Failure,”
February 4, 1992

19. The New York Times, “U.S. Details Flaw in Patriot Missile,” June 6, 1991

Questions for Discussion

•	 How does your organization acquire the
evidence to understand that your system
software will do what it is supposed to do,
under adverse conditions, and won’t do
what it is not supposed to do (guard against
emergent behaviors)?

•	 How does your organization track
configuration management and evaluate
change from a systems perspective?

•	 If your primary unit failed due to software
errors, will it cause the same failure in
your backup? What is your proper level of
redundancy?

•	 Has the risk level of your project decreased,
and your software testing plan increased to
drive down risk?

•	 Do you have contingency plans for on-orbit
anomalies? What anomalies have been tested
for?

•	 How does your organization verify reused or
modified code?

SYSTEM FAILURE CASE STUDIES

Responsible NASA Official: Steve Lilley
steve.k.lilley@nasa.gov
Thanks to Marcus Fisher and Kenneth Vorndran an insightful peer review.
This is an internal NASA safety awareness training document based on information
available in the public domain. The findings, proximate causes, and contributing fac-
tors identified in this case study do not necessarily represent those of the Agency.
Sections of this case study were derived from multiple sources listed under Refer-
ences. Any misrepresentation or improper use of source material is unintentional.

January 2012 System Failure Case Studies - Good Design Built Right 5|Page

mailto:steve.k.lilley@nasa.gov

