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The role of software in the control and operation of flight systems 
has grown dramatically since the landmark Apollo program which 
ended in 1972. Guidance and navigation systems, science payloads, 
environmental control systems—all critical—interface with 
hardware and humans to control almost every significant event in 
the flight profile. Engineers must ask, “Are we building the right 
software?” Then, just as important, “Are we building the software 
right?”

Software assurance and system engineers interestingly note that, 
while software may display defects in design or implementation 
(coding), software does not ‘fail’ after some period of proper 
operation like how a metal component may fracture. Furthermore, 
a software defect may not be immediately apparent, but when 
exposed, the defect will operate exactly as programmed. Examples 
of defects include: Function (missing requirement), Assignment 
(incorrect or missing assigned value), Interface (design specifies 
the interface point to a number, but the implementation points to a 
character), Checking (missing or incorrect validation of parameters, 
data, or a test case versus certain measures), Timing (resource 
serialization is needed and missing, wrong resource serialized, or 
wrong serialization technique), Relationship (traceability from 
requirements to test in error or missing), Build (mistake in version 
control, change management or library systems), Documentation 
(inaccurate or missing information in documentation), Algorithm 
(problem affecting task can be corrected by re-implementing an 
algorithm instead of a design change), Project (team tasked beyond 
resource capabilities), Verification method (not explained or wrong 
for situation).

The following ten recent catastrophic mishaps identify the roles that 
software played as significant causative factors and help recognize 

the effects of failure and the lessons that can be learned from the 
mishaps.

Mishaps within nasa 

STS-126 Shuttle Software Anomaly 

Space Shuttle Endeavour and the STS-126 crew launched on 
November 14, 2008. Upon reaching orbit, the shuttle-to-ground S 
band communications used during launch failed to automatically 
switch to the more powerful Ka band antenna required during 
orbit. Then, shuttle-payload communication, through the Payload 
Signal Processor (PSP), failed 
to automatically switch from its 
wireless RF link to its hardwired 
umbilical cable after reaching 
orbit. Fortunately, mission 
control was able to manually 
command switchover of both 
without obstructing the mission. 

Investigation found that a software change had inadvertently shifted 
data in the shuttle’s flight software code. Because of this build 
defect, the software did not send configuration commands to the 
shuttle’s Ground Command Interface Logic, and several automated 
functions failed.

DART Failed Autonomous Rendezvous 
Test

The DART (Demonstration for Autonomous Rendezvous 
Technology) launched on April 15, 2005 and was programmed to 
rendezvous with the MUBLCOM (MUtiple-path Beyond Line-
of-sight COMmunications) satellite via close range maneuver 
without ground control commands. Approximately 11 hours into the
mission, DART collided with MUBLCOM. DART transitioned to 
its departure and retirement sequence without accomplishing any of 
the 14 mission-critical technology objectives and its fuel supply was 
depleted. 

During the close-range maneuvers, the navigational control for 
DART failed to transition completely to the Advanced Video 
Guidance Sensor (AVGS) to calculate its velocity and position 
relative to MUBLCOM. This interface defect allowed DART to 
approach MUBLCOM without accurate ranging information. The 
collision avoidance system operated as designed, but using the same 



inaccurate position and velocity information, DART collided with 
MUBLCOM. 

The premature retirement of DART occurred due to recurring 
computational resets of its estimated position. DART’s thrusters 
fired more often than planned following the resets, attempting to 
correct for each new estimated position. An incorrect velocity 
measurement was introduced into software during each reset. This 
algorithm defect had been discovered prior to the mission but no 
software change was implemented. 

Loss of Communication with the SOHO 
Spacecraft

The SOHO (Solar Heliospheric Observatory) spacecraft was 
launched on December 2, 1995 to study the Sun from its deep core to 
the outer corona and the solar wind. SOHO succeeded in many of its 
goals, earning it multiple mission extensions. The first came in 1997 
when software modifications were uploaded to conserve operation 
of its gyroscopes. Then in 1998, another software modification 
caused SOHO to lose lock 
on the Sun and immediately 
triggered alarms that sent the 
spacecraft into an emergency 
altitude control mode. During 
recalibration, the spacecraft spun 
out of control and its altitude had 
diverged so far beyond control 
that all power, communications, 
and telemetry signal were lost. 

Ground operators found 
that a build error in the code 
modifications had triggered the 
initial alarm. Critical errors in 
the code modified to conserve 
gyro usage configured the gyros incorrectly, and caused inaccurate 
thruster firings which progressively destabilized the spacecraft. It 
took the ground team over 5 months to find and completely recover 
SOHO.

Mars Pathfinder’s Unexpected System 
Resets 

The Mars Pathfinder landed on Mars in July 4, 1997. It returned 
an unprecedented amount of data and outlived its primary design 
life. But a few days into the mission, the lander’s onboard computer 
repeatedly reset itself, slowing the flow of research data to Earth.

A timing defect in software 
application code caused the 
computers to continually 
reboot. A small low-priority 
task was unable to complete 
its function during data flow to 
Earth when all the high-priority 
tasks were moving at high 
rates. A fail-safe mechanism 
in the software, which resets 
the system automatically when 
any performance is interrupted, rebooted the system when the glitch 
occurred. NASA solved the problem by raising the priority of the 
task involved and adjusting the priority of other tasking in the code.

N
Air Traffic Control Communication Loss

On September 14, 2004, the Los Angeles Air Route Traffic Control 
Center lost all radio communication with 400 airplanes they were 
tracking over the southwestern United States. The incident disrupted 
about 800 flights across the country. The Center’s main voice 
communications system shut down unexpectedly. 

A function defect was found in a software upgrade to a subsystem 
for the Voice Switching and Control System (VSCS). The upgrade 
used a timer to send built-in test queries to the VSCS. The upgrade’s 
test counter counted tests down from the highest number that the 
system’s server and software could handle, counting to zero or until 
reset. Procedures required a technician to reset the voice switching 
system every 30 days. The upgrade had a design defect—it was pro-
grammed to shut down the VSCS without warning if the reset had 
not been done, which it did when the counter reached zero after 49 
days.

The FAA later implemented a software patch that periodically reset 
the counter without human intervention.

Widespread Power Outage in the North-
east 

On August 14, 2003, 
high-voltage power lines 
in northern Ohio brushed 
against some overgrown 
trees and switched 
off. This triggered a 
distribution system load 
imbalance and cascading 
power outage throughout 
parts of the Northeastern 
and Midwestern United States and Ontario, Canada. The blackout 
affected an estimated 55 million people for 2 days, which contributed 
to at least 11 deaths and an estimated cost of $6 billion.
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Computer systems available to local power system operators were 
designed to issue alarms when detecting faults in the transmission or 
generation system. Due to programming errors, these alarms failed. 
System operators were not able to take steps that could have isolated 
utility failures because the data-monitoring and alarm computers 
were not working. Without the knowledge of line failure, operators 
could not act to balance system loads and contain the failure.

A “race condition” or software timing defect was found to be 
the primary cause of the grid event alarm failure. After the alarm 
system failed silently, the unprocessed events started to queue up 
and crashed the primary server within 30 minutes. This triggered 
an automatic transfer of all applications, including the stalled alarm 
system, from the primary to the backup server, which likewise 
became overloaded and failed. Hardware, software and procedural 
improvements followed to prevent recurrence.

MV-22 Osprey Crash
On a routine training mission on December 11, 2000, an MV-22 
Osprey carrying 4 Marines crashed in a wooded area north of 
Jacksonville, North Carolina, killing all on board.

It was found that the 
mishap was caused by a 
burst hydraulic line in one 
of the Osprey’s two engine 
casings. This coupled with 
a software defect causing 
the aircraft to accelerate 
and decelerate violently 
and unpredictably when the 
pilots tried to compensate 

for the hydraulic failure. The Marine Corps report called for a 
redesign of both the hydraulics and software systems involved.

Korean Air Flight 801 Crash
On August 6, 1997, Korean Air Flight 801 approached for landing 
at the Guam International Airport. Heavy rain and reduced visibility 
dictated the crew to fly a precision instrument approach using the 
ILS (Instrument Landing System). Air traffic controllers advised 
them that the ILS glideslope equipment for the available runway 
was out of service. This required the crew to monitor altitude via 
altimeter only until the runway was in sight or until minimum 
approach altitude reached. The aircraft struck a hill approximately 
3 miles short of the runway, at an altitude of 660 feet. Of the 254 
people on board, 228 were killed; the remaining 23 passengers and 3 
flight attendants survived the mishap with serious injuries. 

The investigation found that, while the crew failed to properly 
follow the approach procedure, a ground warning system could have 
alerted controllers to the unsafe descent. However, a Federal Aviation 
Administration (FFA) 
software change 
limited spurious 
alerts. The build defect 
rendered the system 
“almost completely 
useless,” preventing 
approach controllers 
from warning Flight 
801 of its premature 
descent into the hill.

Ariane 5 Failure Forty Seconds After Lift-
Off 
The Ariane 5 is an expandable launch system used to deliver payloads 
into geostationary transfer orbit or low Earth orbit. On June 4, 1996, 
its maiden flight ended in failure, with the rocket veering off its 
flight path and self-destructing at about 40 seconds after initiation of 
the flight sequence, at an altitude of about 12,000 feet. 

It was found that the failure 
was caused by complete loss 
of trajectory guidance due 
to malfunction in the control 
software. Software to align 
the Inertial Reference System 
(IRS) had been reused from 
the Ariane-4 system, but 
behaved differently in the 
Ariane-5. The software was 
not properly tested for the 
trajectory characteristics of 
the new vehicle. Failure in converting 64-bit floating-point number 
to a 16-bit signed integer caused an overflow condition (the 64-bit 
input value was outside the range that could be handled by the 16-
bit signed integer). The assignment defect shut down the primary 
inertial reference system; when control was passed to the identical 
secondary inertial, it predictably suffered the same fate. Ironically, 
the code containing the error had been designed for an Ariane-4 
launch requirement not shared by Ariane-5 and could have been 
eliminated. The onboard computer misinterpreted diagnostic data 
as proper flight data (another software defect) and commanded an 
abrupt maneuver that ripped the boosters from the launch vehicle 
and activated the rocket’s self-destruct mechanism.

Patriot Missile Failure 
On February 25, 1991, 
during the Gulf War, an 
American Patriot Missile 
battery in Dharan, Saudi 
Arabia, failed to track 
and intercept an incoming 
Iraqi Scud missile, which 
killed 28 soldiers. 

The all-weather tactical 
air threat defense at 
Dhahran contained a 
software flaw in the 
system’s weapons control 
computer. This function 
defect led to inaccurate 
tracking calculations that 
worsened over time of 
operation. At the time of the fatal Scud attack, over 100 continuous 
hours of operation increased the error to the degree that the Patriot 
system could not track or intercept the threat. 

Patriot had never before been used to defend against Scud missiles, 
nor deployed to operate continuously for long periods of time. 
Two weeks before the incident, Army officials received Israeli data 
reporting loss in accuracy after 8 consecutive hours of operation. 
While the Army modified the software to correct the defect, the 
software patch did not reach Dhahran until the day after the Scud 
attack. 
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For Future nasa Missions

In these examples, the software did not perform as intended. One 
driving objective of verification and validation is to ensure the 
system software behaves as expected under adverse conditions. 
NASA’s approach to validating and verifying system software 
entails acquiring evidence to answer three questions:

1) Does the system software behave as expected?

2) Does the system software not do what it is not 
supposed to do?

3) Does the system software behave as expected in the 
presence of adverse conditions?

A system driven validation and verification approach effectively 
stresses the system, testing an integrated system under various 
anomalous conditions as early in development as possible to 
understand and generate evidence per the three questions above. 

At a minimum, a common lesson to be learned is to ensure that 
project system and software development efforts consider the 
Verification and Validation three perspectives (NASA’s IV&V 3 
questions) and employ a system/software validation and verification 
effort that does the same.

If nothing else, dedicate resources toward validating software 
requirements—ensure the design is right; for changes made after 
technical baselines are achieved, a revalidation from a systems 
perspective is warranted. Where lives are at stake, even given 
exhaustive testing, design-for-failure considerations would have 
helped the MV-22 Osprey software deal with hydraulic system 
damage. Engineering designs should handle faults intelligently—so 
that persistent faults of the same type cannot bring down a system. 
Our designs and ultimately our systems need to be more adaptable 
to their environments.

The backup system for the Air Route Traffic Control Center failed 
because it lacked a feature to reset its test counter. Question 3 of 
verification and validation efforts, to ensure system software behaves 
as expected in the presence of adverse conditions is a mitigation 
strategy for many of these failures. 

Design also failed the power system operators who could not 
use their backup systems during the Northeast blackout in 2003. 
Redundant hardware can serve against mechanical failure modes, 
but supposedly redundant systems reliant on identical software 
programs (like both Ariane 5 inertial reference systems) can face 
common-cause failures. A validation of requirements may have 
shown the importance of “features” like these and illuminated 
systemic risks to decision makers if requirements were not corrected.

Workarounds stemming from software design shortfalls should be 
unacceptable to designers, especially for mission critical functions 
or procedures. The ability to identify when a workaround impacts 
critical system aspects demands a systems perspective. That someone 
needed to manually reset the clock of the FAA air traffic control 
VSCS system was a precursor of failure that hindsight reveals to 
us. It’s true that workarounds for the SOHO and Mars Pathfinder 
missions salvaged mission objectives. But simulations using an 
integrated system (even if emulated components are used) that 
exhaustively run combinations of task thread priority can uncover 
such problems before critical systems are operated. 

When a software design is reused in a different system, it is important 
to revalidate design and test operation. Investigators did not tell us 
why all Ariane 4 navigation software features were retained for 
Ariane 5, except to ‘be consistent.’ This intent does not recognize 
that Ariane 5 hardware and requirements were different. Again a 
systems understanding and a systems verification and validation 
effort can mitigate the concerns of reusing (or salvaging) previously 
built designs.

To facilitate good engineering practices and increase the likelihood 
for success, development efforts must ensure proper controls are 
in place when changing, modifying, or upgrading safety-critical 
systems. Any changes, big or small, made to the software must be 
properly evaluated, assessed and documented, especially changes to 
safety-critical software that may affect the overall performance of the 
entire system and threaten life safety. Change must be treated with 
the same degree of attention as original development. This lesson 
is evident in the software error found in STS-126 that disabled two 
automatic functions. An update to the shuttle’s flight software code 
was not properly implemented nor verified leading to the anomaly. 
Another example is the mishap of Flight 801 where the Minimum 
Safe Altitude Warning (MSAW) system was inhibited without fully 
realizing the negative consequences. A third example is the loss 
of contact with the SOHO spacecraft where critical errors in code 
modifications to conserve gyro usage destabilized the spacecraft. 
Good decisions about change are informed decisions; if project 
managers are truly shown the negative impacts on the system, then 
they can make well-informed risk decisions. Decision makers need 
the “system impact” perspective but do not always receive it. 

How much and what kind of testing is enough? It’s easy to say that 
extensive (expensive) testing should be performed. It is realistic to 
put forth a robust testing strategy that adequately stresses the system 
under adverse conditions, at every level, from unit through system 
test, using authentic operational and exception scenarios. This is what 
validation and verification and assurance-related activities focus 
on. All the tasking in the software code of the Mars Pathfinder was 
exhaustively tested before the mission, but not all code was tested 
at once. During the operation when the spacecraft was bombarded 
by low and high priority tasks, it significantly affected the system’s 
performance. The DART project began as a relatively low-cost, 
high-risk effort with less rigorous software testing requirements than 
projects with higher expectations of success. When DART’s mission 
objectives gained importance, requirements to better ensure good 
software design did not follow. Technology demonstrator projects 
or projects with low-TRL (Technology Readiness Level) gain much 
from verification and validation and assurance-related activities. 
Stressing the system and testing off-nominal conditions is beneficial 
for a project with less schedule and budget resources to cover these 
aspects.   

For safety-critical systems, it is important to test, not only for what 
the software should do, but also for what it should not do. Ensure 
the system can return to a safe state after experiencing a specific 
negative occurrence, instead of simply allowing itself to reboot or 
shut down.

Software should be tested over several days of equivalent mission 
time to find problems such as timing errors or overrunning counters. 
This would have found the glitch that would have prevented the 
Patriot to decrease its efficiency when it was operated continuously 
for over 100 hours.
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The incidents covered in this report not only led to the loss of time 
and money, but also the loss of life; proof that software plays an 
immense role as a causative factor to project failures in NASA and 
industry.

Systems engineering and project management need to integrate 
validation and verification efforts into systems integration strategies 
to inform decision making by evidence of what the system software 
actually does, what the system software does not do, and how the 
system software behaves under adverse conditions. 

To ensure good design and implementation, a proven, successful 
option available to engineers is to run a software Verification and 
Validation project parallel to software development. A Verification 
and Validation project employing reviews, static and dynamic 
analysis, testing, and formal methods can ensure software conforms 
to requirements and expected operational behavior at every phase of 
the project’s life cycle.
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Questions for Discussion

•	 How does your organization acquire the 
evidence to understand that your system 
software will do what it is supposed to do, 
under adverse conditions, and won’t do 
what it is not supposed to do (guard against 
emergent behaviors)?

•	 How does your organization track 
configuration management and evaluate 
change from a systems perspective? 

•	 If your primary unit failed due to software 
errors, will it cause the same failure in 
your backup?  What is your proper level of 
redundancy? 

•	 Has the risk level of your project decreased, 
and your software testing plan increased to 
drive down risk? 

•	 Do you have contingency plans for on-orbit 
anomalies? What anomalies have been tested 
for? 

•	 How does your organization verify reused or 
modified code?
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Thanks to Marcus Fisher and Kenneth Vorndran an insightful peer review.
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