
The Need for Earth-Based Experiments to Inform Microbial Evolution on Planetary Surfaces

Science and Planetary Protection in Advance of Human Missions
Virtual Seminar
31 October 2024

Chelsi D. Cassilly

Planetary Protection/Materials Engineer
Space Environmental Effects Team
Nonmetallic Materials and Space Environmental Effects Branch
NASA/MSFC/EM41
Chelsi.D.Cassilly@nasa.gov

Introduction

- The goal of forward planetary protection at NASA is to mitigate the risk of contaminating sensitive target bodies with biological life
 - Typically microorganisms

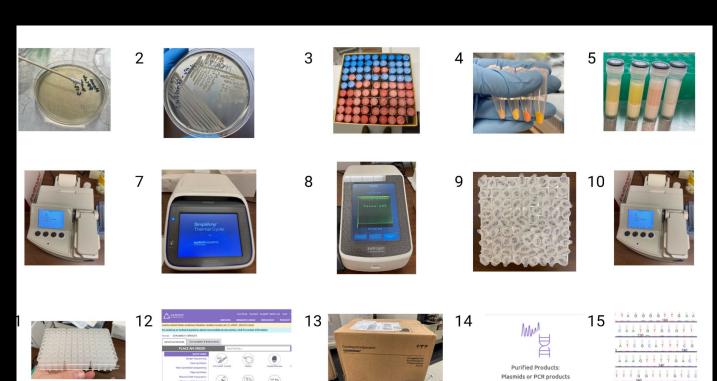
When Humans Go...

- ...microbes will too.
- Human skin harbors millions of bacteria, fungi, and viruses
 - Halotolerant and desiccation resistant
- Microbes aboard the International Space Station evolve and adapt to life in low earth orbit
- Possible harmful effects to crew and impacts to planetary or astrobiological science

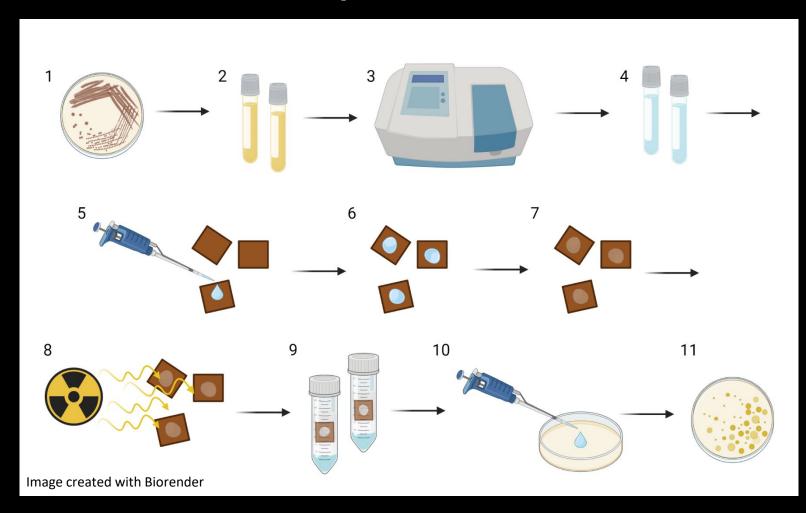
Risks of Microbial Evolution

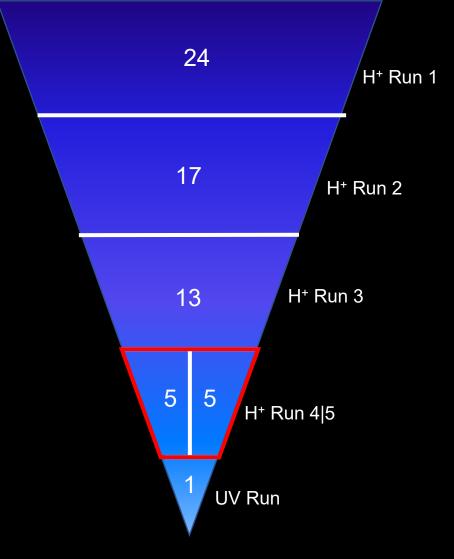
During extravehicular activities, venting, or other release events, microbes will find their way out onto the Martian surface.

Eventually, microbes may find their way beyond the close confines of the crewed area and continue evolving so as to fill new or distant niches on the Martian sufface.

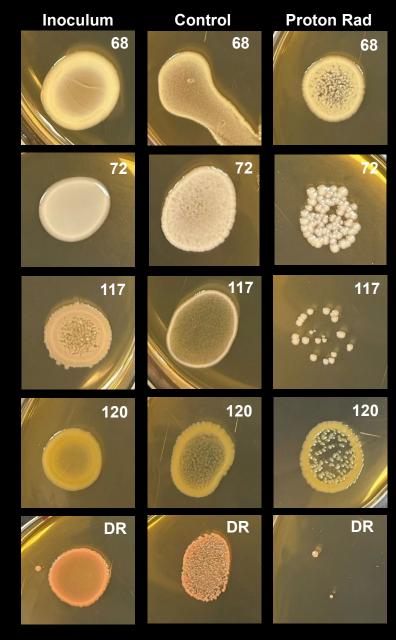

Examples of Evolution on Earth

- Serial passaging by Richard Lenski shows dramatic changes E. coli undergoes within a laboratory setting
- Michael Baym demonstrated the power of single mutations in microbial development of antibiotic resistance
- Could we do similar experiments for space-like stressors? Space environments?
- What experiments can we have the crew do during cruise phase to Mars?


MSFC Cleanroom Microbial Library


- Collected 95 microbial isolates from cleanroom environments at MSFC
- Identified them using 16S or ITS commercial sequencing

Exposure of Cleanroom Microbes to Simulated Space Environments



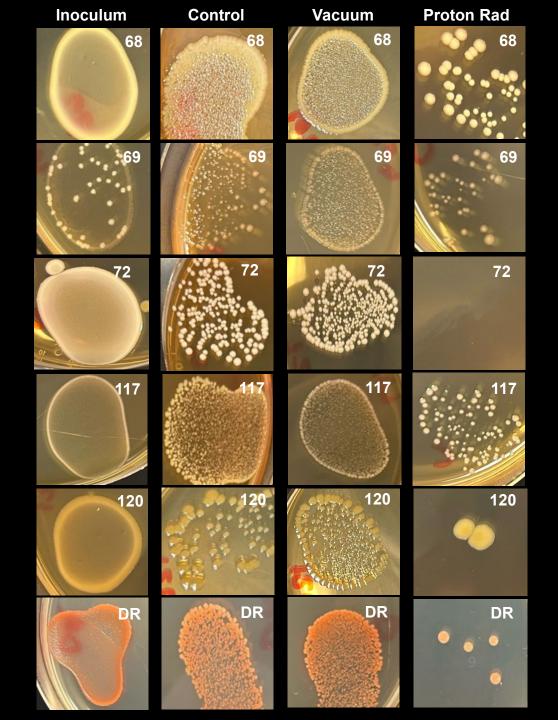
Four Isolates with Increased Ionizing Radiation Resistance

Run 3

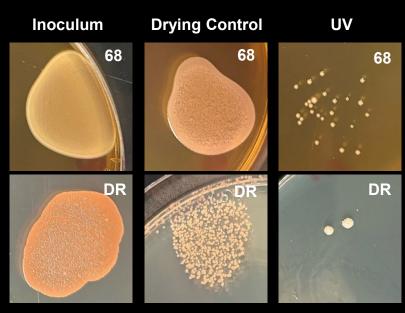
Isolate#	Identity	Inoculum	Control	Proton Rad
PPS55	Alkalihalobacillus gibsonii	+	-	-
PPS67	Brevundimonas vesicularis/nasdae	+	-	-
PPS68	Arthrobacter koreensis	+	+	+
PPS69	Acinetobacter lwoffii or Prolinoborus fasciculus	+	+	minor
PPS72	Paenarthrobacter nitroguajacolicus	+	+	+
PPS73	Staphylococcus hominis	+	+	-
PPS74	<i>Brevundimonas</i> sp.	+	minor	-
PPS77	Janibacter hoylei	+	+	-
PPS111	Bacillus licheniformis	+	minor	-
PPS114	Bacillus atrophaeus	+	+	-
PPS117	Mycetocola manganoxydans	+	+	+
PPS120	<i>Erwinia</i> sp.	+	+	+
PPS125	Neocylindroseptoria sp.	+	+	-
ATCC 13939	Deinococcus radiodurans	+	+	minor
Negative	Water	-	-	-

Control: ambient drying

Radiation: 100 keV protons at a fluence of $2x10^{15}$ /cm² at $\sim 10^{-6}$ Torr

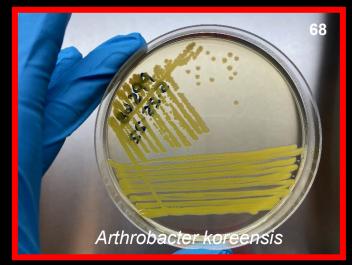

Four Isolates with Increased Ionizing Radiation Resistance

Run 5

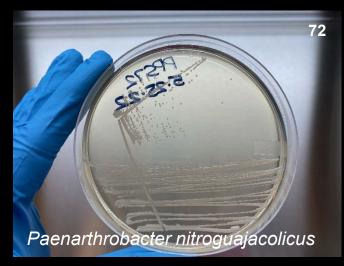

Isolate #	Identity	Inoculum	Control	Vacuum	Proton Rad
PPS68	Arthrobacter koreensis	+	+	+	+
PPShu	Acinetobacter Iwoffii or Prolinoborus fasciculus	+	+	+	+
PPS / 2	Paenarthrobacter nitroguajacolicus	+	+	+	-
	Mycetocola manganoxydans	+	+	+	+
PPS120	<i>Erwinia</i> sp.	+	+	+	minor
ATCC 9372	Bacillus atrophaeus spores	+	+	+	+
ATCC 13939	Deinococcus radiodurans	+	+	+	minor
Negative	Water	-	-	-	-

Control: ambient drying Vacuum: ~10-6 Torr

Radiation: 100 keV protons at a fluence of 4x10¹⁵/cm² at ~10⁻⁶ Torr



A. koreensis Demonstrates Resistance to UV



UV: 254 nm wavelength light at an intensity of 80 W/m² at ~18 cm for 10 minutes

Four isolates sent for whole genome sequencing

Acknowledgements

NASA

NASA MSFC

- Jason Vaughn
- Dr. Peter Bertone
- Todd Schneider
- Dr. Erin Hayward
- Dr. Jarvis Caffrey

JPL

- Dr. Atul Chander
- Dr. Kasthuri Venkateswaran

NASA JSC

- Dr. Sarah Wallace
- Dr. Hang Nguyen
- Sarah Rommel
- Christian Castro

Rush University

- Dr. Stefan Green
- Kevin Kunstman

Jacobs/ESSCA

- Curtis Bahr
- Samantha Marcella
- Heather Morris

Funding by Jacobs Innovation Grants and NASA's Office of Planetary Protection

Community Discussion

- Short duration exposures are not enough
- Larger and more gradual studies to replicate 1)
 cruise, 2) to surface habitats, 3) to induced surface
 environments, and finally true 4) Martian
 environments
- No Earth-based experiment can perfectly replicate the Martian environment
- We cannot test every possible microbe in simulation experimental regimes
- Examine the evolutionary potential of the "usual suspects" on ISS or in other crewed environments
- What else?

