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Introduction

« Current and future concept space exploration missions seek to determine past and
present capability to support life and presence of life outside of Earth

* Knowledge of molecular constituents outgassed from spacecraft is needed to analyze the
probability of a mission to meet its science objectives

« Qutgassing analysis methods are needed to further current predictive capabilities

« JPL and collaborators are currently working on the development of multispecies
formulations for materials outgassing to allow more accurate extrapolation to mission
conditions.
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+ Outgassing is the spontaneous evolution of atoms or molecules from ’ Adsorption ® ® °
a material
+ Outgassing contamination is governed by several processes 5 |
1. Diffusion of contaminant through the source material g |
2. Viable Transport Mechanism = I
3. Adsorption to the receiver material I
+ 1,2,4 All of these physical processes have an exponential,
Arrhenius, dependence on temperature |

Transport depends on environment (vacuum/continuum) and
geometry

+  Continuum: Diffusion/Convection transport
* Rarefied: Intermediate Knudsen number
« Vacuum: Ballistic (line of sight) transport
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Outgassing Sensitivities Examples

Mars 2020

« Sampling Mars with
objectives to detect organic
signatures

» Outgassing contaminants
condensing within sample

Mars Sample Return

* Returning sample tubes
intended to detect
organic signatures

» Outgassing
contaminants leaking
through sealed tubes
could jeopardize
scientific objectives

over the missipn to guarantee

g must be
and quantified
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g detection
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SPH EREX scientific

» Scientific objectives to
image biogenic molecules
in the universe

» Water outgassing
condensing in telescope
causes severe attenuation
of throughput

This document has been reviewed and determined not to contain export controlled technical data.

Europa Clipper

* Mass spectrometer v
instrument with objectives & L iv Y
to sample Europa's :

atmosphere

» Outgassing contaminants
reflected off atmosphere
induce spurious mass
spectra
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Outgassing Kinetics
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Outgassing Metrics tracked in MIUL

ASTM E595 Standard Test Method for Total Mass Loss and
Collected Volatile Condensable Materials from Outgassing
in a Vacuum Environment

Sample is outgassed at 125C for 24 hours

Percent total mass loss (% TML)
» Screening criteria <1.0%
* Measured by mass loss of sample

Percent collected volatile condensable materials (%CVCM)
» Screening criteria for vacuum stable is <0.1%
* Measured by condensation of contamination on QCM at +25C

Very limited transferability of information.
« Sample temperature is not representative of many missions

*  Measurement of % TML is often not useful for many missions.
Many contaminants are not relevant

+  Temperature of QCM for %CVCM is not representative for
many missions. Colder temperatures condense outgassing
more readily
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Detailed Outgassing Testing

ASTM E1559: Standard Test Method for Contamination Outgassing Characteristics of Spacecraft Materials
* More comprehensive test to study outgassing.
Outgassing materials testing is typically performed in specialized vacuum chambers designed for precise measurements of
outgassing.
Typically two test exercises to characterize outgassing kinetics
1. Outgassing:
+ Sample is held at constant temperature or predefined temperature steps. Controls diffusion of outgassing out of sample
material
+ Multiple QCMs at different temperatures measure outgassing collection over time. Controls residence time on different
QCMs
2. Reemission / QCM Thermo Gravimetric Analysis (QTGA):
* QCM temperature is slowly raised (1C/min). Slowly changes residence time so contaminant species desorb.

ASTM E1559: Standard Test Method for Contamination
Outgassing Characteristics of Spacecraft Materials e
ECSS-Q-TM-70-52a: Kinetic outgassing of materials for space " HEEEQCMs
ass
Spectrometer — -

"
_— ‘\k\ N

Sample
- Load Lock
Sample
Effusion Cell
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Outgassing Test

Typical for ASTM E1559
ECSS-Q-TM-70-52a method

Sample is held predefined
temperature steps.

Multiple QCMs at different
temperatures measure
outgassing collection over
time

Total accumulation on QCM
provide information on initial
concentrations C,

Net rates of accumulation on
different temperature QCMs
provides information on
residence time: £, 4.

Change in sample
temperature probes £, ;¢ ¢
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QCM Thermo Gravimetric Analysis Test

*  Typical for ASTM E1559
ECSS-Q-TM-70-52a method

+ Outgassing sample is
removed from test chamber
into load lock so QCMs are no
longer accumulating

*  QCM temperature is slowly
raised (1C/min). Slowly
changes residence time so
contaminant species desorb

*  Provides information on
residence time in in much
higher granularity, £, ;s

* As temperature of QCM is
raised slowly, contaminant
species desorb sequentially
due to their residence time
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Multispecies Model Kinetic Fitting Scheme

All available datasets are fit to minimize error between model and data
VCMs datasets:
* Modeling both diffusion and adsorption/desorption collection.
»  Critical to model both to describe diffusion and desorption.
QTGA datasets:
+ Atleast 1 QTGA at the end of the test. May contain many QTGA datasets
* Modeling adsorption/desorption

Result from a good fit is a
set of kinetic contaminant
parameters (per
contaminant species)
which characterize
outgassing from that
material and
adsorption/desorption Datasets

Material Parameters

Model Input Variables oD, @

(Per species)
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Example Multispecies Model Fit

Test material isothermal has temperature steps at 20C 40C and 70C
with QCMs collecting at 80K, -100C, -50C, -20C

Model simultaneously reproduces key outgassing and collection
features

*  QTGA and reemission residence times
« Temperature behavior of outgassing
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Outgassing chemistry identification

So far everything is a mathematical fit of kinetics.
Recognizing species through desorption rate physical separation

ASTM-1559 QTGA-QCM Mesurements for NuSil CV4-2946
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Controlled temperature
gradient helps separate
species in the QTGA
section of the 1559 test




g Ll - Ll
¢ Filling the gap between 1559-QTGA and experimental spectrum
3
C
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¢ What makes a mass channel relevant to an outgassing species
3
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What information can be inferred from a mass spectrum
Working with indirect information about a chemical species

800

600 -

400 4

200 4

2/27/2024

NuSil CV4-2946 n°3 vs. Octane

5%
B Candidate's Spectrum

56

Experimental Spectrum

RMSLE 3%
Spec2Vec 3%
MS2DeepScore 3%

Composite 3%

Diverse Scores — Unique Composite Score

Florian Huber et al., 2021

-2.364

2.209
1.320
1.393

Spectrum similarity used as a proxy for molecular similarity helps
us determine what the contaminants are most likely to be
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¢ How to make sense of the result

¢ In the end, what can be known of a given outgassing species
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Mass Spectrometry Benefits DFT simulation of

alkane adsorption

* By connecting kinetic multispecies model to mass spectrometry the kinetic o TiN

contaminant parameters, {Dy, Eq 4irf » Co, To,des:Eaaast Of OUtgassing molecules can
be determined

»  This kinetic multispecies model allows the capability of extrapolating outgassing for
specific mission time and temperature conditions

*  Knowledge of the contaminant chemical composition allows for a much more
comprehensive understanding of the effects of outgassing contamination on
scientific objectives

*  Molecular properties such as IR or UV spectra can be used to assess the

impact to optical instruments and throughput (Example: SPHEREX, CGl,
Psyche/DSOC)

+  Chemical composition can be assessed for the impact on sampling missions NIST IR Adsorption Spectra
and detection of organics (Examples: Mars 2020, Mars Sample Return, Europa Dodecanal

© 2024. All rights reserved.

Lander) T
+  Chemical composition can be assessed for the impact on mass spectrometers I W
flown on missions intending to study atmospheric composition (Example: 0.96
Cassini, Europa clipper) I INFRARED SPECTRUM
+ Additionally with the knowledge of chemical composition molecular properties can
be calculated directly using computational material science techniques

+  Density functional theory was used to calculate the adsorption energy, E4 445, t0
TiN, the low surface energy coating in the Mars 2020 sample tubes’

0.92 -
L NI N

Ci,Hy,0
184AMU

Relative Transmittance

0.88[

3000 2000 1000
Wavenumber (cm-1)
NIST Chemistry WebBook (https://webbook.nist.gov/chemistry)
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Mars Example: Guaranteeing Detection

«  Scientific requirement of less than 10
parts per billion (PPB) Total Organic
Carbon (TOC) of terrestrial origin within
the cached samples

- Each sample is nominally 15g which
means less than 150ng of contamination
can be tolerated

« This is less than a single layer of
adsorbed contaminant molecules within
the sample tubes

*  More complicated than just cleaning
sample tubes before launch. Outgassing
can easily exceed this budget

Robotic Arm

Turret (Robotic Arm End Effector)
[

- Cerer
= SHERLOC Instrument
= PIXLinstrument

Tube Exterior
(unsesled)

Y @0;

External coating 1\ g dy
Nitrided T-6A

(Nitrided TH6AI-4V)
Tube Interior Collected \4
(sealed) Sample
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Bare Titanium

Tube Sealing & jts 3 Drop-off Station
Drop-off Station = BisarPartualet
over Par

Bit Carousel
Inner Door
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Former Fetch Rover Wake

Mars Example

« Can contaminate hardware used to sample
« Can contaminate Martian samples

« Al contamination effects to science had to be
tracked to verify Mars 2020 and MSR science
requirements

© 2024. All rights reserved.
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¢ Mars Example
§ < The perseverance rover could potentially contaminate a sampling site
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= + Depends on Mars wind speed and wind direction
§ -+ This influenced loiter times limits when the Perseverance rover is allowed to be near a sampling site
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Mars Example

« Simulation of contamination transport
Atmospheric environment
+ Diffusion transport regime
» Contamination is mainly adsorbed by the high
energy surfaces and cannot diffuse into the
sample intimate surfaces

It is expected that the sample tubes remained
at their as-cleaned cleanliness
« Pending updating analysis with flight data

« This is expected to significantly improve
estimates over the previous model

ok
>< |/ oo 1—|
15 N 0
10 -0.021-
s oo
.

mars.nasa.gov
jpl.nasm.gov
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Conclusions

* Framework for the comprehensive modeling of outgassing generation and effects has
been under active development
* Physics of outgassing

« Activation energies of processes control conditions under which contamination can be
generated and accumulated

*  Multispecies model

+ Determination of outgassing constituents

« Extrapolation of each species outgassing to mission condition
* Transport models

* New end-to-end calculations combing the measured and characterized outgassing rate of the
ACA with the calculated surface properties of the sample tubes
* For the example of Mars 2020 all of these culminate into the estimate of the terrestrial
contamination of the samples guaranteeing unambiguous future detection of Martian
based organics samples

This document has been reviewed and determined not to contain export controlled technical data.
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Europa Clipper:

Recent Relevant Publications by JPL
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Soares, C., Wong, A., Fugett, D., Hoey, W., Alred, J., Ferraro, N., Thorbourn, D., 2019. “High-Energy Radiation Testing and
Effects on Spacecraft Materials Outgassing.” Proc. 70th International Astronautical Congress.
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Psyche Asteroid Mission:
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SPHEREXx Observatory:
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Conte, A., Hoey, W., Wong, A., Soares, C., Grabe, M., Hepp, C., 2022. “Europa Lander Plume-Induced Contamination:
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Gateway:

*  Hoey, W., Soares, C., Martin, M., Shallcross, G., Steagall, C., Worthy, E., 2022. “A Predictive Model of Lunar Gateway Molecular
Contamination.” Presentation, ISMSE 15.

Roman Space Telescope Coronagraph Instrument (CGl):
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Materials, and Planetary Protection Workshop ().
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